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Abstract—Genetic Algorithms (GAs) are powerful search techniquesthat are
usedto solvedifficult problemsin many disciplines.Unfortunately, they canbevery
demandingin terms of computation load and memory. Parallel GeneticAlgorithms
(PGAs) are parallel implementationsof GAs which can provide considerablegains
in terms of performance and scalability. PGAs can easily be implemented on net-
works of heterogeneouscomputersor on parallel mainframes.

In this paper we review the stateof the art on PGAs and proposea new taxono-
my also including a new form of PGA (the dynamic dememodel) we have recently
developed.

I . INTRODUCTION

GeneticAlgorithms (GAs) are searchalgorithmsinspired
by geneticsand natural selection[1]. The most important
phasesin GAs arereproduction,mutation,fitnessevaluation
andselection(competition). Reproductionis the processby
which the geneticmaterialin two or moreparentindividuals
is combinedto obtainoneor moreoffspring.Mutationis nor-
mally appliedto oneindividual in orderto produceanew ver-
sionof it wheresomeof theoriginalgeneticmaterialhasbeen
randomlychanged.Fitnessevaluationis thestepin which the
qualityof anindividualis assessed.This is veryoftenthemost
CPUintensive partof a GA. Selectionis anoperationusedto
decidewhich individualsto usefor reproductionandmutation
in orderto producenew searchpoints.

SequentialGAs have beenshown to be very successfulin
many applicationsand in very different domains. However
thereexist someproblemsin their utilisationwhich canall be
addressedwith someform of ParallelGA (PGA):

� For somekind of problems,thepopulationneedsto be
very largeandthememoryrequiredto storeeachindi-
vidualmaybeconsiderable(like for examplein genet-
ic programming[2]). In somecasesthis makesit im-
possibleto runanapplicationefficiently usingasingle
machine,sosomeparallelform of GA is necessary.

� Fitnessevaluationis usuallyvery time-consuming.In
the literaturecomputationtimesof morethan1 CPU
year have beenreportedfor a single run in complex
domains(e.g.see[3]). It standsto reasonthattheonly
practicalway of provide this CPUpower is to theuse
of parallelprocessing.

� SequentialGAs may get trappedin a sub-optimalre-
gion of thesearchspacethusbecomingunableto find
betterquality solutions. PGAscansearchin parallel
differentsubspacesof the searchspace,thus making
it less likely to becometrappedby low-quality sub-
spaces.

For thefirst two reasonsPGAsarestudiedandusedfor ap-

plicationson massively parallelmachines[4], transputers[5],
andalsoondistributedsystems[6]. However, themostimpor-
tantadvantageof PGAsis thatin many casesthey providebet-
terperformancethansinglepopulation-basedalgorithms,even
whenthe parallelismis simulatedon conventionalmachines.
The reasonis that multiple populationspermit speciation,a
processby which differentpopulationsevolve in differentdi-
rections(i.e. toward different optima) [7]. For this reason
Parallel GAs arenot only an extensionof the traditionalGA
sequentialmodel,but they representanew classof algorithms
in thatthey searchthespaceof solutionsdifferently.

Interestingly, PGAsoftenallow theoreticalanalyseswhich
arenotharderthanthosefor sequentialGAs[8], [9]. Owingto
thelargenumberof modelproposedin theliterature,theonly
problemthatonehasto faceto usePGAsis how to determine
which parallelmodelto use.

Therehave beensomeattemptsto developa unifiedtaxon-
omyof parallelGAswhichwouldgreatlyhelpaddressingthis
issue.Somearegeneraldistributed-memoryarchitecturetax-
onomies[10], othersare taxonomiesof coarsegrainedGAs
[11], or of fine-grainedGAs [12]. (For other relatedefforts
aresee[13], [14], [15].) ThemostrecentgeneralPGA taxon-
omy wascompiledby Eric Cant́u-Paz[16]. However, noneof
thesetaxonomiesis fully comprehensive andsatisfactory. In
additiondifferenttaxonomiesareincompatible.

In orderto overcometheseproblemswedecidedto propose
anew, uniformtaxonomyof ParallelGeneticAlgorithms.This
will bedescribedin therestof thepapertogetherwith areview
of theresearchdoneon eachclassof PGAs.1

I I . OVERVIEW OF OUR PGA TAXONOMY

Theway in which GAs canbe paralleliseddependson the
following elements:

� How fitnessis evaluatedandmutationis applied
� If singleor multiplesubpopulations(demes)areused
� If multiple populationsareused,how individualsare

exchanged
� How selectionis applied(globally or locally)

Dependingon how eachof theseelementsis implemented,
morethanten differentmethodsof parallelisingGAs canbe
obtained.Thesecanbeclassifiedinto eight(moreor lessgen-
eral)classes:

1. Master-Slaveparallelisation(distributedfitnessevalu-
ation)

�
For moreinformationsee[17].
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(a) Synchronous
(b) Asynchronous

2. Staticsubpopulationswith migration
3. Staticoverlappingsubpopulations(withoutmigration)
4. Massively parallelgeneticalgorithms
5. Dynamic demes(dynamic overlapping subpopula-

tions)
6. Parallelsteady-stategeneticalgorithms
7. Parallelmessygeneticalgorithms
8. Hybrid methods(e.g. staticsubpopulationswith mi-

gration,with distributedfitnessevaluationwithin each
subpopulation)

The relationsbetweentheseclassesare shown in Figure 1.
To overcomemisinterpretationsour taxonomyincludesmore
classesthanother taxonomies.In the following sectionswe
will briefly describeeachof theclassesin termsof theparallel
model they useandwe will discusshow they relateto other
taxonomies.
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Fig. 1. ParallelGeneticAlgorithmsTaxonomy

I I I . MASTER-SLAVE PARALLELISATION

This method,alsoknown asdistributedfitnessevaluation-
was,is oneof thefirst successfulapplicationsof parallelGAs.
It is known asglobal parallelisation, master-slavemodel, or
distributedfitnessevaluation.

The algorithmusesa singlepopulationandthe evaluation
of the individualsand/orthe applicationof geneticoperators
areperformedin parallel. The selectionandmating is done
globally, henceeachindividual may competeandmatewith
any other.

Theoperationthat is mostcommonlyparallelisedis thee-
valuationof thefitnessfunction,becausenormally it requires
only theknowledgeof theindividual beingevaluated(not the
whole population),andso thereis no needto communicate
during this phase.This is usuallyimplementedusingmaster-
slave programs,wherethe masterstoresthe populationand
theslavesevaluatethefitness,applymutation,andsometimes
exchangebits of thegenome(aspartof crossover).

Parallelisationof fitnessevaluation is done by assigning
a fraction of the populationto eachof the processorsavail-
able(in theidealcaseoneindividualperprocessingelement).
Communicationoccursonly aseachslavereceivestheindivid-
ual (or subsetof individuals)to evaluateandwhentheslaves
return the fitnessvalues,sometimesafter mutationhasbeen
appliedwith thegivenprobability.

Thealgorithmis saidto besynchronous, if themasterstops
andwaits to receive the fitnessvaluesfor all the population
beforeproceedingwith the next generation.A synchronous
master-slave GA hasexactly the samepropertiesasa simple
GA, exceptfor its speed,i.e. this form of parallelGA carries
out exactly thesamesearchasasimpleGA.

An asynchronousversionof the master-slave GA is also
possible.In this casethe algorithmdoesnot stopto wait for
any slow processors.For thisreasontheasynchronousmaster-
slavePGAdoesnotwork exactlylikeasimpleGA, but is more
similar to parallelsteady-stateGAs (seebelow). The differ-
encelies only in the selectionoperator. In a asynchronous
master-slave algorithmselectionwaits until a fraction of the
populationhasbeenprocessed,while in a steady-stateGAs s-
electiondoesnotwait, but operatesontheexistingpopulation.

A synchronousmaster-slave PGA is relatively easyto im-
plementandasignificantspeedupcanbeexpectedif thecom-
municationscost does not dominatethe computationcost.
However, thereis a classicalbottle-neckeffect. The whole
processhasto wait for the slowestprocessorto finish its fit-
nessevaluations.After that,theselectionoperatorcanbeap-
plied. The asynchronousmaster-slave PGA overcomesthis,
but as statedbefore,the algorithm changessignificantly the
GA dynamics,andasa resultit is difficult to analyse.Perhap-
s the easiestway of implementingan asynchronousmaster-
slave PGA is applyingtournamentselectiononly considering
thefractionof individualsin thepopulationwhosefitnesshas
beenalreadyevaluated.

IV. STATIC SUBPOPULATIONS WITH M IGRATION

The importantcharacteristicsof theclassof staticsubpop-
ulationswith migrationparallelGAs are the useof multiple
demesandthepresenceof a migrationoperator.

Multiple-deme GAs are the most popular parallelisation
method,andmany papershavebeenwrittendescribingdetail-
s of their implementation[16]. Thesealgorithmsareusually
referredto assubpopulationswith migration,staticsubpopu-
lations,multiple-demeGAs,coarse-grainedGAsandevenjust
parallelGAs.

This parallelisationmethodrequiresthe division of a pop-
ulation into somenumberof demes(subpopulations).Demes
areseparatedfrom oneanother(geographicisolation), andin-
dividualscompeteonly within ademe.An additionaloperator
calledmigration is introduced: from time to time, somein-
dividuals are moved (copied)from onedemeto another. If
individualscanmigrateto any otherdeme,themodelis called
an islandmodel. If individualscanmigrateonly to neighbour-
ing demes,we have a steppingstonemodel. Thereareother
possiblemigrationmodels.
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The migrationof individualsfrom onedemeto anotheris
controlledby severalparameterslike:

� Thetopologythatdefinestheconnectionsbetweenthe
subpopulations.Commonlyusedtopologiesinclude:
hypercube,two-dimensional/three-dimensionalmesh,
torus,etc.

� A migration rate that controlshow many individuals
migrate

� A migration scheme,that controlswhich individuals
from the sourcedeme(best,worst, random)migrate
to anotherdeme,andwhich individuals are replaced
(worst,random,etc.)

� A migrationinterval that determinesthe frequency of
migrations

Coarsegrained algorithms is ageneraltermfor asubpop-
ulation modelwith a relatively small numberof demeswith
many individuals.Thesemodelsarecharacterisedby therela-
tively longtimethey requirefor processingagenerationwithin
each(“sequential”)deme,andby their occasionalcommuni-
cationfor exchangingindividuals. Sometimescoarsegrained
parallelGAs areknown asdistributedGAs becausethey are
usuallyimplementedon distributedmemoryMIMD comput-
ers. This approachis alsowell suitedfor heterogeneousnet-
works.

Fine grained algorithms arethe opposite.They requirea
largenumberof processorsbecausethepopulationis divided
into a largenumberof small demes.Inter-demecommunica-
tion is realisedeitherby usinga migrationoperator, or by us-
ing overlappingdemes.Recently, the term fine-grainedGAs
wasredefinedandis now usedalsoto indicatemassively par-
allel GAs [16] (seebelow).

The multiple-dememodelpresentsoneproblem: scalabil-
ity. If one hasonly a few machines,it is efficient to usea
coarsegrainedmodel. However, if onehashundredsof ma-
chinesavailable, it is difficult to scaleup efficiently the size
andnumberof subpopulations,to usethe hardwareplatform
efficiently.2

Despitethisproblem,themultiple-dememodelis verypop-
ular. From the implementationpoint of view, multiple-deme
GAs are simple extensionsof the serial GA. It’s enoughto
take a few conventional(serial)GAs, run eachof themon a
nodeof a parallelcomputer, andto apply migrationat some
predeterminedtimes.

V. STATIC OVERLAPPING SUBPOPULATIONS WITHOUT

M IGRATION

This modelis similar to thepreviousone. Theentirepop-
ulation consistsof a numberof demes.The main difference
is the lack of migrationoperatorassuch. Instead,propaga-
tion andexchangeof traits is doneby individualswhich lie in
thesocalledoverlappingareas. Thedemesareorganisedin a
kind of spatialstructurethatprovidesthe interactionbetween
them. Someindividualsbelongsto morethanonedeme,and
Z

Whenhundredsof PEsin a MIMD architectureareavailable,theuseof hybrid methodslike static
subpopulationswith migrationanddistributedfitnessevaluationwithin eachsubpopulationcanbequite
efficient.

participatein morethansinglecrossover andselectionoper-
ations. This methodcanbe easilyappliedto sharedmemory
systems,by placingthe whole populationin the sharedarea,
andby runningthe GAs in eachdemeconcurrently. A small
amountof synchronisationis neededin overlappingareasfor
thecrossover, mutationandselectionoperators.A numberof
differentmodelsof spatialdistributionfor thedemesexist,e.g.
2D-mesh,3D-mesh,etc.

VI . MASSIVELY PARALLEL GENETIC ALGORITHMS

If weincreasethenumberof demesin theoverlappingstatic
subpopulationsmodelanddecreasethenumberof individuals
in eachdemewewill obtaina(fine-grained)massively parallel
GA. Becausethe featuresof this kind of algorithmsarequite
different than thoseof the overlapping(coarse-grained)sub-
populationmodel,andbecausethis algorithmis usuallyused
in massively parallelsystems,wedecidedto addthiscategory
to the generalcategoriesof parallelgeneticalgorithms[18],
[19]. Algorithmsin this categoryareoftencalledsimply fine-
grainedGAs.

In thesealgorithm there is only one population,but it is
has,like in overlappingdemes,a spatialstructurethat limits
the interactionsbetweenindividuals. An individual canonly
competeand matewith its neighbours,but sincethe neigh-
bourhoodsoverlap,goodsolutionsmaydisseminateacrossthe
entirepopulation.

It is commonto placethe individualsin a two-dimensional
grid, becausemany massively parallel systemsuseintercon-
nectednetworks of PEswith this topology. However, it is
alsopossibleto usea hypercubearchitectureor otherrouting
schemeslike: aring,atorus,a

[1\^]`_a]`_
cube,a b ] b ] b ] b ] b

hypercube,anda 10–D binary hypercube.It is alsopossible
to usean island structurewhereonly oneindividual of each
demeoverlapswith otherdemes.

The idealcaseis to have just oneindividual for every pro-
cessingelement(PE)available.This modelis suitedfor mas-
sively parallel computersbut it can be implementedon any
multiprocessor.

This modelcanbe simulatedon a clusterof workstation-
s, but in this caseit hasthe disadvantageof involving an ex-
tremelyhighcommunicationcost.

VI I . DYNAMIC DEMES

DynamicDemesis a new parallelisationmethodfor GAs
[17] which allows the combinationof globalparallelism(the
algorithmcanwork asa simplemaster-slave distributedGA)
with a coarse-grainedGA (overlappingsubpopulationsmod-
el). In this modelthereis no migrationoperatorassuch,be-
causethewholepopulationis treatedduringevolutionasasin-
glecollectionof individuals,andinformationbetweenindivid-
ualsis exchangedvia a dynamicreorganisationof the demes
duringtheprocessingcycles.

From the parallel processingpoint of view the dynamic
demesapproachfits perfectlytheMIMD category(Flynclassi-
fication)asanasynchronousmultiple master-slavealgorithm.

The main idea behind this approachis to cut down the
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waiting time for the last (slowest)individualsto arrive in the
master-slave model, by dynamicallysplitting the population
into demes,which canthenbeprocessedwithout delay. This
is efficient in termsof processingspeed.In additionthealgo-
rithm is fully scalable.Startingfrom aglobalparallelismwith
fitness-processingdistribution,onecanscaleup thealgorithm
upto afinegrainedversion,with afew individualswithin each
demeandbig numbersof demes.

The algorithm, can be run on shared-and distributed-
memoryparallelmachines.Thanksto its scalabilityit canbe
usedin systemswith a few ProcessingElementsas well as
in massively parallelsystemswith large numberof PEs,and
everythingin between.

DynamicDemesis scalableandeasyto implementmethod
of GA parallelisation.Themethodhasbeenshown to bevery
efficientandusefulin numberof application[17].

VI I I . PARALLEL STEADY-STATE ALGORITHMS

In steady-stateGAs,it is reallystraightforwardto parallelise
the geneticalgorithmsoperators,sincethis kind of GAs use
continuouspopulation-updateschemes.If childrenaregrad-
ually introducedinto a single,continuously-evolving popula-
tion, the only thing to do is apply selectionandreplacement
schemesin the critical section.3 The otherGA operators,in-
cludingfitnessevaluation,canberun in parallel.

IX. PARALLEL MESSY GENETIC ALGORITHMS

MessyGAs have threephases.In theinitialisationandpri-
mordialphasestheinitial populationis createdusinga partial
enumeration,andit is reducedusinga kind of tournaments-
election. Then,in the juxtapositionalphase,partial solutions
foundin theprimordialphasearemixedtogether. Theinitial-
isation phasecan be donecompletelyconcurrentlysinceno
communicationis needed.Sincetheprimordialphaseusually
dominatestheexecutiontime, concurrentmodelsof selection
andevaluationarenormally usedonly in this phase.For ex-
ampleavariantof distributedfitnessevaluationhasbeenused,
but with someadditionalfeaturein the masterprocessto de-
creasethesizeof population[20].

X. HYBRID METHODS

In order to paralleliseGAs it is alsopossibleto usesome
combinationof methodspreviously described. We call this
classof algorithmshybridparallelGAs. Combiningparalleli-
sationtechniquesmayresultin algorithmsthathave thebene-
fits of theircomponentsandshow betterperformancethanany
of thecomponentsalone.

XI . DIFFERENCES WITH OTHER TAXONOMIES

Therearesomerelationsbetweenexisting taxonomiesand
theproposedone.Someof themwereexploredin appropriate
sectionsabove. Thereare two major differencesleft, which
will bedescribedbriefly in following paragraphs.
c

Critical sectionroutines(critical section)is anapproachto theproblemof two or moreprocessors
(processes)competingfor thesameresourceat thesametime. In concurrentprogrammingthecritical
sectionbitsof theprogramshouldbesynchronisedandrun sequentially.

It is important to emphasisethat while the synchronous
master-slavemethoddoesnotaffect thebehaviour of thealgo-
rithm, coarsegrainedmethodsintroducefundamentalchanges
in the way the GA works. For example,in the synchronous
master-slave methodtheselectionoperatortakesinto account
the entirepopulation,while in the other parallelGAs selec-
tion is local to eachdeme.Also in themethodsthatdivide the
populationinto demesit is only possibleto matewith asubset
of individualswhereasin theglobalsynchronousmaster-slave
modelit is possibleto matewith any otherindividual. Some
taxonomiesexcludefrom parallelmodelsthose,which do not
differ from sequentialcounterparts,andbecauseof that, the
synchronousmaster-slavemodelis excludedfrom theclassof
ParallelGeneticAlgorithmsin sometaxonomies.

In sometaxonomies,thecategory parallel steady-stateGA
representsthemodelof subpopulationswith migration,where
eachsubpopulationworksasasteady-stateGA. In ourtaxono-
my thismodelrepresentsthehybridmethod:staticsubpopula-
tionswith migrationwhereeachsubpopulationis a(sequential
or parallel)steady-stategeneticalgorithm.

XI I . CONCLUSIONS

In this paperwe have reviewed the main resultsin the re-
searchon parallelgeneticalgorithmsandproposeda new tax-
onomy which overcomesthe problemspresentin earlier at-
temptsto classifythehugeliteratureon thissubject.

We hopethis effort will helpothers(particularlydesigner-
s andengineerswho want to usegeneticalgorithmsfor large
scalecomplex optimisationproblems)choosetheright paral-
lelisationmodelfor their applications.
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