
International Conference on Computer Systems and Technologies - CompSysTech’2004

MAPNET: A .NET-Based Mobile-Agent Platform

Dilyana Staneva, Denitsa Dobreva

Abstract: Mobile agent-based computing is an attractive model for organizing distributed

computations. This paper reveals our experience in developing a specific implementation of this model: the
MAPNET mobile-agent platform, based on the .NET Framework. The paper describes the basic functionality
of the platform and focuses on the design and implementation of a MAPNET agent and core agent services.
Brief directions when and how to use the platform are also given.

Keywords: distributed computing, mobile agent-based computing, .NET Framework

INTRODUCTION
Mobile agent-based computing has been quite popular in academia and industry over

the last 10 years, as a replacement or extension to the traditional client/server model. The
majority of mobile-agent platforms currently used are Java-based. The MAPNET platform
we've built is an alternative implementation of the mobile-agent model, based on the .NET
Framework and the MASIF specification for mobile-agent systems behavior and
interaction. The MAPNET project is generally targeting .NET developers of distributed
applications. We intend to include it as case study in distributed programming courses.

BACKGROUND
In the context of the mobile-agent model, an application is organized as a collection

of mobile and stationary agents. A mobile agent encapsulates code and data transfer in a
networked environment and can be used as a structuring block for distributed
computations.

The basic difference between stationary and mobile-agent solutions is illustrated in
Fig.1.

Fig.1 Stationary vs. mobile-agent solution

Instead of communicating remotely, the mobile agent migrates to or near the location
of the resources needed. Replacing remote communication with migration and local
communication can be advantageous in several scenarios: intensive processing, filtering
or monitoring at the data source.

Mobile-agent platforms are the specific implementations of the general model,
supporting a single or multiple languages for developing mobile-agent solutions. Mobility is
achieved by extending existing, typically interpreted, languages. A key component of a
platform is the agent server, also called agent system or agency, which hosts and
manages mobile agents. The majority of mobile-agent platforms are Java-based (IBM
Aglets [1], IKV++ Grasshopper [3]), while others support scripting languages (D'Agents [2],
Tacoma [9]). We've applied the Grasshopper and D'Agents platforms for building

- II.13-1 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

monitoring applications [7, 8]. An attractive feature of using mobile-agent platforms,
especially for teaching purposes, is their high-level style of expressing migration, hiding
the underlying communication details.

Distributed solutions with mobile agents are typically suitable for scenarios, in which
migration could reduce network traffic [4]. Furthermore, mobile agents can be used as
"pluggable" services.

As mobile-agent platforms are quite different in architecture and implementation, the
MASIF (Mobile Agent System Interoperability Facilities) specification [5] is intended to
facilitate their interoperability, especially for platforms using the same instrumental
language. MASIF covers several aspects of agents and agent servers, including agent
transfer and management, naming and security. Agents' serialization, deserialization and
execution are outside the scope of MASIF. MASIF defines two public interfaces of a
mobile-agent platform: the basic functionality of an agent server and of a registration
system. We've basically conformed to the requirements of the MASIF specification.
Several concepts and functions are not implemented in the current, initial version of the
MAPNET platform; they can be added in subsequent versions.

The MAPNET platform is an implementation of the mobile-agent model, based on the
Microsoft .NET Framework [6]. We've developed the platform as an alternative tool,
specifically targeting .NET developers. The MAPNET project is intended to encourage
students to explore diverse models of distributed computations, leveraging .NET
Framework resources. The .NET Framework provides the developer with a wealth of
technologies for implementing distributed solutions, like Remoting, Web Services,
serialization, reflection and security.

The MAPNET platform is a type library, written in C#, for representing agents and
agent servers (Fig.2), targeting the .NET CLR (Common Language Runtime).

Fig.2 MAPNET components

MAPNET AGENT
A mobile agent in the general model is mapped to a descendent of the abstract base

Agent class in the MAPNET platform. It provides the core functionality of a mobile agent,
as illustrated in Fig.3.

The Agent class is marked as Serializable to enable the migration of its
descendents' instances. For agents to be accessible remotely, the base Agent class
inherits the .NET MarshalByRef class. The MAPNET platform supports both migration
and remote inter-agent communication. It's the developer who decides whether and when
to use migration or remote communication.

Migration is initiated by the agent itself through invoking its Move() method, passing
as parameter the location of the desired destination agent server. The Remove() method
initiates the agent's own destruction. Both methods cannot be overridden by the agent
developer, as they are crucial for the functionality of a mobile agent. They call the

- II.13-2 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

respective agent server methods. The agent server provides the interface between the
mobile agents and the .NET Platform. Thus, each agent stores internally a reference to its
hosting server.

Fig.3 The base Agent class

The Run() method is the only abstract method of the Agent class. The agent
developer must extend the Agent class and provide an implementation of the Run()
method. The Run() method is executed as the "body" of the mobile agent. In it, the
developer should specify the agent's behavior during its "lifetime". Here is an example how
to extend the base Agent class:

[Serializable]
public class MyAgent : Agent {

 public override void Run() {
 // agent's behavior:
 // local processing first,
 // then attempt to migrate
 try {
 Move(newLocation);
 }
 catch (Exception e) {
 // migration failed
 }
 }
 ...

}

The Move() method can raise exceptions, like AgentMigrationFailed-
Exception. Therefore, its invocation should be placed in a try-block with proper catch-
filters.

There are several Agent methods, which the developer can optionally override. One
of them is the Init() method, which is used in MAPNET in place of a standard
constructor. It is called by the agent server after creating the agent instance.
BeforeMove() and AfterMove() are respectively called immediately before and after
migration. BeforeRemove() is called before agent destruction. The developer should
override BeforeMove() and BeforeRemove() to dispose resources consumed by the
agent. The Log() method should be implemented to write diagnostic agent-related
messages to a user-specified file.

Apart from the methods, inherited by Agent, the programmer-defined Agent
descendent could contain other members to define its specific state and behavior.

Each mobile agent in the MAPNET platform is assigned a profile, managed by the
agent server. The profile is represented by the MAPNET AgentProfile class and

- II.13-3 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

contains useful information: agent name, agent state, names of the home, last visited and
current agent server, optional agent description, as well as programmer-defined agent
properties, like "friendly" name. The mobile agent "carries" its profile with it during
migration.

According to the MASIF specification, agent names, as well as agent server names,
must be globally unique and immutable, but how to achieve uniqueness is implementation-
dependent. Names in MAPNET are constructed in the following format:

Prefix#IPAddress:Port#DateTime,
where Prefix can be "Agent" or "AgentSystem". A similar approach is used in the

Grasshopper platform [3].

MAPNET AGENT SERVER
MAPNET agents are executed in the context of an agent server. One or more

instances of the MAPNET server must be running on each machine willing to host
MAPNET agents.

The MAPNET server provides the core infrastructure for managing agents. Its main
functions are grouped together as services (Fig.4).

Fig.4 MAPNET core services

The main functions of the MAPNET server can be summarized as follows:
• Agent management: According to MASIF, each agent server must be able to
create, terminate, suspend, resume and transfer (send and receive) mobile agents,
• Agent naming,
• Threading: The thread manager assigns a separate background thread to each
newly-created or newly-arrived agent to carry out its actions,
• Agent registration: The local registration service within each server is used to store
and retrieve agent profiles. New agents are automatically registered. Provides
methods for searching local agents,
• Remote communication between agents, and
• Security: The server must provide a secure environment for agents.
The MAPNET communication service is responsible for all interactions between

agent servers. It implements the infrastructure for migration and remote inter-agent
communication, based on the .NET Remoting technology. The currently implemented
security mechanisms: agent server authentication and message encryption, are embedded
into the communication service.

A supporting class-loading service is used to dynamically load the necessary mobile-
agent related assemblies and classes.

- II.13-4 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

The MAPNET server is responsible for starting and stopping all services, and

forwarding invocations of its interface methods to the respective services.
The server exposes a set of agent-related events, like AgentCreatedEvent,

AgentRemovedEvent, and AgentMovedEvent, to notify interested "listeners". Event
publishing and subscription is a very flexible pattern of interaction and synchronization,
which we've applied in our implementation. For example, the GUI front-end to the
MAPNET server subscribes and reacts to agent-related events.

Each agent server is associated with a profile, containing its name, optional
description and properties.

The thread manager within the MAPNET server organizes a pool of threads and
assigns them to mobile agents. We've developed a custom pool to minimize thread
creation overheads. The implementation of the pool relies on .NET WaitHandle objects.
The .NET Framework provides a ThreadPool class, but its threads are not controllable,
e.g. suspendable or resumable.

During its lifetime, an agent can be in one of the states, depicted in Fig.5.

Fig.5 Mobile agent states

CreateAgent(), SuspendAgent(), ResumeAgent(), MoveAgent() and
RemoveAgent() are MAPNET server methods, implementing the respective control
operations on agents. An agent is destroyed and its thread freed, when its Run() method
completes or when the agent initiates its own destruction (Remove()). Agent migration is
implemented, following the requirements of MASIF, in several steps. At the source agent
server, migration includes three main actions:

• The agent is terminated and its controlling thread is returned to the pool, ready to
serve other agents.
• The current agent's state is converted to a byte stream. Our current
implementation relies on the .NET binary serialization. Therefore, the agent's class
must be marked as Serializable. Binary serialization affects all fields, not
explicitly tagged with the NonSerialized attribute.
• The actual agent transfer is delegated to the communication service.
The destination agent server performs a symmetric sequence of steps:
• Its communication service receives the agent.
• The agent's state is restored through deserialization.
• The agent is assigned a controlling thread to execute its Run() method.

CONCLUSIONS AND FUTURE WORK
During the design and implementation of the MAPNET mobile-agent platform, we've

tried to follow the requirements of the MASIF specification and leverage the most suitable
.NET Framework resources to build a functional and elegant product.

We've relied heavily on .NET threading, remoting, serialization, event handling and
security.

- II.13-5 -

International Conference on Computer Systems and Technologies - CompSysTech’2004

We've also implemented a global service for registering agents and agent servers,

based on .NET Remoting. The current, initial implementation does not support MASIF
places and regions.

Two immediate directions for future work will be oriented to strengthening security by
enforcing agents' permissions, and extending the class-loading service.

The MAPNET platform could be useful for developers working on related problems,
as well as for those intending to use a .NET-based mobile-agent platform. We consider
using the project as case study in distributed programming courses.

REFERENCES
[1] Aglets Specification 1.1. IBM Corp., 1998. http://www.trl.ibm.co.jp/aglets/.
[2] D'Agents Platform. http://www.cs.dartmouth.edu/~agent.
[3] Grasshopper Programmer's Guide. IKV++ GmBH, Informations- und Kommunika-

tionssysteme, 2001. http://www.grasshopper.de.
[4] R. Gray, D. Kotz, G. Cybenko and D. Rus. Mobile agents: Motivations and state-

of-the-art systems. Dept. of Computer Science, Dartmouth College, 2000.
[5] MASIF Specification. http://www.omg.org, 1998.
[6] Microsoft .NET Framework. http://msdn.microsoft.com/netframework.
[7] D. Staneva, P. Gacheva. Building distributed applications with Java mobile

agents. Proceedings of Next Generation Network Technologies International Workshop,
pp. 103-109, Rousse, Bulgaria, 2002.

[8] D. Staneva, E. Atanasov. Using Tcl Mobile Agents for Monitoring Distributed
Computations. Proceedings of the International Conference on Computer Systems and
Technologies CompSysTech'2003, pp. II.21.1-II.21.6, Sofia, Bulgaria, 2003.

[9] Tacoma Mobile-Agent System. http://www.tacoma.cs.uit.no.

ABOUT THE AUTHORS
Dilyana Violinova Staneva, Assistant Professor, Ph.D. Computer Science &

Engineering Department, Technical University of Varna, Bulgaria. Phone: +359 52
383424, e-mail: dilyana@tu-varna.acad.bg.

Denitsa Yordanova Dobreva, Worked on the MAPNET platform as a master student
at the Computer Science & Engineering Department, Technical University of Varna,
Bulgaria.

- II.13-6 -

	INTRODUCTION
	BACKGROUND
	MAPNET AGENT
	MAPNET AGENT SERVER
	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	ABOUT THE AUTHORS

