The Aglets 2.0.2 User’s Manual

Luca Ferrari

October 6, 2004

Contents

Introduction

1

Installation

1.1 Installing from compiled packages
1.2 Installing from the CVS
1.3 Compile from the source

Managing login data
2.0.1 Creating anew account
2.0.2 Changing the password of an existing account
2.0.3 Deleting an account
2.04 Listing the content of the keystore
2.0.5 User’s Configuration Files

Using the Tahiti server

3.1 Tahiti GUL e
3.11 The Aglet menu.
3.1.2 The Mobility menu
3.1.3 The Viewmenu.
3.14 The Optionsmenu
3.1.5 The Toolsmenu
316 The Helpmenu

3.2 The Tahiti command line

Developing agents with Aglets

4.1 Configuring your IDE to use the Aglets library
4.1.1 Using command linetools
412 UsingIBM Eclipse,
4.1.3 Using Netbeans IDE
414 Using JBuilder

42 BaseKnowledge. oL
4.2.1 Main Methods of an Aglet
4.2.2 Message handling L oo
423 Events Lo

10
11

13
13
14
15
15
16

17
17
17
21
24
25
29
31
31

43 Code Examples 39

431 Abaseagent 40

43.2 Event Listeners 40

4.3.3 Remote Messaging 43

434 Asleepingaglet. 45

5 FAQ & Configuration Files 48
51 FAQ 48
5.2 Configuration Files L 0. 64

6 The IBM Public License - version 1.0 68

Introduction

This document provides a guideline for those, either developers or users, who
want to deal with the Aglets mobile agent platform.

Originally developed at the IBM Tokyo Research Laboratory, Aglets was
appreciated for its clear and easy to use API, good modularity and design.
Since the initial effort of IBM, several versions of Aglets have been released,
and currently the project is hosted at Sourceforge. The development was
stopped around 2001, and now it is going to restart due to the change of the
project administrator.

Due to several reasons, there is not a complete documentation about
Aglets, thus the reason of this document. Furthermore, most of the doc-
umentation available in Internet is quite old and does not reflect the real
platform behavior. This manual wants to substitute and concentrate most
of the old documentation, being “the entry point” for everyone who wants to
start using Aglets. Of course, as the platform itself, this manual is always
under construction, thus you should check periodically for newer versions.
Furthermore, since describing Aglets is not a trivial task, due to its exten-
sion, I preferred to start writing what really lack in the documentation: how
to install, how to write sample aglets, how to manage server data, etc. 1
hope this manual will, one day, substitute all other documents available, but
the fact is that it does not do today, and in fact you will not find here infor-
mation about concepts like proxies, messages, etc. This means that, before
you start developing agents, you have to look to the Aglets Working Draft
(still unfinished), just to learn base concepts about activation/deactivation,
message passing, etc.

On-line Resources

There is not a lot of documentation and examples available on-line, and
furthermore they are often quite old. It is for this reason that I have decided
to write this guide. However, if you need further help, you should take a
look at the Aglets web site: hitp://aglets.sourceforge.net. There you can
find information and documentation about the Aglets project, and of course
about the Aglets mailing lists. So far, Aglets provides four mailing lists:

e aglets-users:

a general mailing list for users and developers who use the Aglets tech-
nology;

e aglets-developers:
a mailing lists for all who are involved in the Aglets platform develop-
ment, want to propose new features or to submit bugs;

e aglets-commit:
informs about the CVS commits and new available releases;

e aglets-net:
a mailing list related to the aglets-net project, a collection of Aglets-
based applications.

Actually, mailing lists are the fastest and easiest way to get help about
Aglets. At time of writing, the Aglets website is under construction, thus it
could appear uncomplete; I am doing all my best to complete it.

About this document

The original version of this document has been written by Luca Ferrari using
ITEXon a Linux system. People who wants to collaborate to improve this
document (correcting mistakes, adding images or code samples, etc.) can
contact me at catfhire@Qusers.sourceforge.net or can post a message to the
aglets-developers mailing list.

Chapter 1

Installation

This chapter describes how to install and run for the first time the Aglets
2 platform. Please consider that Aglets 2 is shipped with both the ASDK
(Aglets Source Development Kit) and the run-time environment. The former
is the Aglets library, that allows developers to complie Aglets-based applica-
tions; the latter is a set of pre-built agents and programs used to implement
a stand-alon platform, thanks to which you can execute and dispatch agents
on your machine.

To run the Aglets platform you need at least a Java 2 Run-time Envi-
ronment (JRE), even if it is recommended to install the full Java 2 Source
Development Kit (J2SDK), which allows you to compile agents. This chapter
does not cover how to get and install the JRE or the J2SDK; for informa-
tion about Java see the SUN web site: http://java.sun.com. Aglets can be
installed on a Unix/Linux system, Microsoft Windows and Mac OS X. More
in general, each architecture able to run the Java 2 platform is a possible
target on which install Aglets.

The following paragraphs show how to install Aglets from the three avail-
able forms: compiled package, CVS, compiling from sources. In the following,
an installation over a Unix machine will be shown, even if steps are the same
for all other supported platforms. It is supposed you have all required Java
commands in your PATH, thus they can be executed starting from their
short name. Please read the first of the following paragraphes, since it is
the more detailed one and other two rely on that for the directory structure,
execution of common commands, and so on.

1.1 Installing from compiled packages

This is the recommended way, since compiled packages contain stable ver-
sions of the platform and of the library (ASDK). If you are not a developer,
you should install Aglets starting from compiled packages. Both the li-
brary and the platform are shipped within a single file, a jar archive (Java

ARchive), with a name that reflects the version of Aglets it contains. In the
following we will refer to the version 2.0.2 of Aglets (the latest stable at the
moment of writing), which archive file is:

aglets-2.0.2. jar

The following steps detail how to install Aglets starting from the above
archive.

1. Decompress the archive:
Since Aglets comes as compressed archive, you need first to decompress
it. Please take care that the archive will be decompressed in the current
directory, thus it is better to create a container directory for your aglet
installation. An example can be /java/aglets. Once you have created
the directory, copy the archive file into it and execute the jar command
to decompress the archive:

jar xvf aglets-2.0.2.jar

During the decompression you will see a few of lines scrolling on the
screen, indicating what is going to be extracted:

luca@linux:/java/aglets> jar xvf aglets-2.0.2.jar

created: META-INF/
extracted: META-INF/MANIFEST.MF
created: bin/
extracted: bin/agletsd.bat.in
extracted: bin/agletsd.in
extracted: bin/ant
extracted: bin/ant.bat
extracted: bin/build.xml
extracted: bin/daemoncontrol.bat.in
extracted: bin/daemoncontrol.in
extracted: bin/lcp.bat
created: cnf/
extracted: cnf/aglets.props
extracted: cnf/agletslog.xml
extracted: INSTALL.html
created: 1lib/
extracted: 1ib/jaxp.jar
extracted: lib/tahiti.properties
extracted: 1ib/log4j.jar
extracted: lib/parser.jar
extracted: lib/aglets-2.0.2.jar
extracted: lib/ant.jar

extracted: lib/crimson.jar

Once you have extracted the archive, you should see a set of sub di-
rectories as follows:

e bin will contains executable programs for the Aglets 2 platform,
such as the daemon in charge of receiving incoming agents. Fur-
thermore it contains files required by further installation steps;

e cnf contains configuration files for the Aglets platform;

e public contains a few examples of agents, and should be your root
directory as base of your own agents;

e [ib contains the Aglets 2 library (as a jar archive) and other li-
braries required by the Aglets technology.

Please read README and INSTALL files (if any), since they could include
specific documentation related to the version you are installing and
that it is not yet included in this manual.

. Install the platform:

To install the platform you need to run Apache Ant, a tool expressively
made to compile and install Java applications. Aglets 2 is shipped with
a version of Ant that is suitable to install the platform, nevertheless
it is possible to use another version of Ant (is recommended a ver-
sion greater than 1.5). Check the Ant project web site at the Apache
Foundation site http://www.apache.org to get more information about
Ant.

To install Aglets with the shipped Ant, you need first to enter the bin
directory, where the Ant buildfile build.xml is present, and then run:

luca@linux:/java/aglets> cd bin/
luca@linux:/java/aglets/bin> chmod 755 ant
luca@linux:/java/aglets/bin> ./ant
Buildfile: build.xml

BUILD SUCCESSFUL
Total time: 8 seconds
During the library build /installation you will see messages coming from

the Aglets mantainer about the current version; please read them since
they could contain information not yet reported in this manual.

3. Set up policy:

As other Java applications, the Aglets platform requires entries in
the Java policy file (usually /.java.policy) to open sockets, execute
agents, access local files and so on. You can copy entries from the file
bin/.aglets.policy (of the Aglets installation) in your /. java.policy
or you can ask Ant to do it for you. This is the recommended way,
since it can change depending on administrators wills and since is a
more transparent and standard way. Furthermore, Ant will install a
base keystore for you. Aglets requires a keystore in order to contain
keys for secure agent migrations; usually the keystore is contained in
the /.keystore file.

To install both the policy entries and the keystore in your home direc-
tory, launch ant specifying the install-home option:

luca@linux:/java/aglets/bin> ant install-home
Buildfile: build.xml

install-home:
[echo] Copying .java.policy file...
[copy]l Copying 1 file to /home/luca
[echo] Copying .keystore file...
[copy] Copying 1 file to /home/luca

BUILD SUCCESSFUL
Total time: 1 second

Security note:

Please consider that both the policy entries and the keystore file are
meant to allow Aglet users to quickly and easily start using the plat-
form; you should striclty check the security options before running the
Aglets platform over a production machine.

4. Set up environment variables:
In order to get the Aglets platform running, you should set the fol-
lowing environment variables to the installation directory of Aglets:
AGLETS_HOME and AGLETS_PATH. Furthermore, to run the Aglets plat-
form in a more comfortable way, add the bin directory of the Aglets
installation to your PATH. If you are running a Unix-Linux system with
Bash, you can do the following:

export AGLETS_HOME=/java/algets
export AGLETS_PATH=$AGLETS_HOME
export PATH=$PATH:$AGLETS_HOME/bin

while in a Microsoft Windows system you can do:

(€ Logn)M OE:

Aglets Login

Mame: anonymous

Passworg; | wwse]

Login ‘ Cance| |

Figure 1.1: Tahiti login window.

set AGLETS_HOME=c:\java\algets
set AGLETS_PATH=}AGLETS_HOME}
set PATH=YPATH};\%AGLETS_HOME)\bin

or you can configure environment variables from the control panel.

. Run the Aglets server:

Once you have installed the Aglets platform and the keystore, you
can run the default Aglets server, that is called Tahiti. Tahiti can be
executed through the command agletsd, that starts the Aglets server:

luca@linux:/java/aglets/bin> agletsd

Tahiti will ask the user to authenticate itself, showing a window with
fields for username and password (see figure 1.1); if the user has in-
stalled the default keystore the username is anonymous and the pass-
word is aglets. Once the user has logged in, the Tahiti main window
is displayed (see figure 1.2). Within this window the user can manage
the server, creating and disposing agents, getting information, and so
on.

Do not worry to much if, at start time, the agletsd command shows
a few warnings like the followings:

AgletRuntime is requested to get unknown user’s certificate
Signature of shared secret is incorrect.

secret is null.

[Warning: The hostname seems not having domain name.

Please try -resolve option to resolve the

fully qualified hostname

or use -domain option to

manually specify the domain name.]

' l At he s gietViewer [atp:.‘.‘linux:ddBd‘[
2t Mobility Wiew Options Tools

e e
HiLy BLIGHS TG0

>{I Create| Daing

w
A el
Sy

Tahiti - The Aglet VYiewer is Running...

Figure 1.2: Tahiti main window.

® [shutdown Server | 7Y I

Shutdown Sarvear

QK?

lm Reboot| Cancel|

Figure 1.3: Confirmation required for server shutdown

They are warning related to your netwrok connection, and you will see
how to fix them in furher chapters.

Please note that the Tahiti main window gives information about the
server; it suffices to look at the main window title to know which port
the server is listening on (by default 4434) and within who is running
(the username).

To stop the server, simply click on either the close button in the window
title bar (usually an ’'x’) or select Ezit from the Aglet menu. In both
cases, Tahiti will ask you for a confirmation (see figure 1.3); clickin on
"OK’ will shutdown the Aglets server (killing all running agents and
freeing resources), ’Cancel’ will leave Tahiti running and 'Reboot’ will
force a server restart.

1.2 Installing from the CVS

You can install the Aglets platform from the CVS repository. The
following are the required steps:

(a) Create the directory for the repository:
You need to create a directory playing as a container for the

10

CVS repository. In this directory you will download a copy of
all sources currently inserted in the CVS repository.

Log in to the CVS server:

To log in to the CVS server do the following:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
login

The server will responde with

Logging in to
:pserver:anonymous@cvs.sf.net:2401/cvsroot/aglets
CVS password:

No password is required for anynoums access, so simply leave it
blank. After the login, the command prompt of your shell will be
shown again. Now you are logged in the CVS server, and you can
download the source tree.

Download the source tree:
You need to download from the aglets module, thus do:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
checkout aglets

The system will download (or update if you have already a version
of the CVS repository) each source file in the on-line repository,
placing files into a subdir with the same name of the module (in
this case aglets). After that you can logout doing:

luca@linux:/java/aglets/bin> cvs
-d:pserver:anonymous@cvs.sf.net:/cvsroot/aglets
logout

Compile the dowloaded source tree:

The source tree you have downloaded must be compiled in or-
der to build the Aglets library and platform. Enter in the src
subdirectory and run Ant there, you will see the compilation of
all sources. At the end of the compilation, the library and the
platform will be installed in the module directory (i.e., the parent
directory of the src one).

1.3 Compile from the source

The compilation of the source tree can be done easily through
Ant, as already described in the previous sections. Once you have

11

downloaded the source tree (either from HTTP or CVS), compile
the whole tree entering in the tree directory (the one that contains
a file called build.zml) and running ant, as already described in
this chapter.

12

Chapter 2
Managing login data

As already detailed in the installation sequence, the Aglets platform uses a
default couple username/password for user authentication. You can create
a new login (i.e., a new couple username/password) or modify the password
of an existing username using the keytool command shipped with the Java
2 platform. This chapter will show a base use of the keytool command, in
order to allow you to manage certificates and logins. For a better description
of the keytool capabilities, refer to the official SUN documentation.

To manage information stored in the keystore you need to own the key-
store password, that will be asked for each operation. The keystore password
protect the whole certificate database, and should not be confused with the
user’s password, required to access a single certificate. Furthermore, it is not
a good idea to have the keystore password identical to a certificate password.

2.0.1 Creating a new account

To create a new account (i.e., a couple username/password) start the keytool
command specifying the new username. To keep it simple, consider the cre-
ation of an account with myAglet as username and buzzle as password. Here
there is the first step of the creation:

luca@linux:/java/aglets/bin> keytool -genkey -alias myAglet
Enter keystore password: aglets

The command asks the keystore password, that for the default Aglets key-
store (i.e., the keystore installed by Ant) is aglets. Please note that the
keystore password is echoed as plain text on the terminal, and this means
you should manage the keystore away from other people eyes.

Once you have entered the correct keystore password, the command will
ask you a few information, such as your name, you department, and so on.
All those information are required to generate a certificate that identificates
the user; that certificate will be stored in the keystore. The following is a
dump of a possible set of information I could use:

13

What is your first and last name?
[Unknown]: Luca Ferrari
What is the name of your organizational unit?
[Unknown]: AgentGroup
What is the name of your organization?
[Unknown]: University of Modena and Reggio Emilia
What is the name of your City or Locality?
[Unknown]: Modena
What is the name of your State or Province?
[Unknown]: Italy
What is the two-letter country code for this unit?
[Unknown]: it
Is CN=Luca Ferrari, 0U=AgentGroup, 0=University of
Modena and Reggio Emilia, L=Modena, ST=Italy, C=it
correct?
[no]l: yes

Finally, keytool will ask you the password to use for the above new username.
Be carefull writing the password, since it will be asked once (not twice as
many password programs do) and will be echoed as plain text on your monitor.

Enter key password for <myAglet>
(RETURN if same as keystore password): buzzle
luca@linux:/java/aglets/bin>

When the keytool program finishes, the command prompt is displayed. Now
you can use the new couple of username and password to login in the Aglets
platform.

2.0.2 Changing the password of an existing account

To change the password of an existing username, use the keypasswd option
of the keytool command. Suppose that you want to change the password of
the username myAglet, the following is what you have to do:

luca@linux:/java/aglets/bin> keytool -keypasswd -alias myAglet
Enter keystore password: aglets

First of all, the command will ask you the password of the whole keystore,
that as already written, by default is aglets. After that, the old password is
required:

Enter key password for <myAglet>buzzle

Finally, the new password is required. Please note than, even if here the
password is asked twice, preventing thus miswritings, the password value
is printed also on the screen, and this requires nobody is watching at your
password.

14

New key password for <myAglet>: buzzle2
Re-enter new key password for <myAglet>: buzzle2
luca@linux:/java/aglets/bin>

Now you have changed the password of the specified username, and can use
the new password to login in the Aglets platform.

2.0.3 Deleting an account

If you want to delete a whole account, you can use the delete option of the
keytool command. For example, if you want to delete the myAglet account,
do the following:

luca@linux:/java/aglets/bin> keytool -delete -alias myAglet
Enter keystore password: aglets
luca@linux:/java/aglets/bin>

\end{center}

Be aware of what you are doing, since the command is very silent! As you can
see, only the keystore password is required, after that the deletion happens
without asking any user confirmation.

2.0.4 Listing the content of the keystore

To view which certificates are handled by the current keystore, simply do:

keytool -list
Enter keystore password: aglets

that will print something like the following:

Keystore type: jks
Keystore provider: SUN

Your keystore contains 2 entries

anonymous, Sep 6, 2004, keyEntry,

Certificate fingerprint (MD5):
78:13:74:36:92:F4:51:04:56:36:BB:41:CC:3E:96:94

aglet_key, Sep 6, 2004, keyEntry,

Certificate fingerprint (MD5):
B6:8D:E5:6E:42:19:2F:AB:20:25:12:32:99:8B:77:09

The output above shows that only two certificates are present in my current
keystore, and that the username to access those certificates are anonymous
and aglet key. The above certificates are created by the Ant installation.

15

2.0.5 User’s Configuration Files

Aglets stores, for each users, a few configuration files in the user’s home direc-
tory. In particular, Aglets will create a directory called .aglets, containing
a few subdirectories as shown below:

e cache it will be used by a running platform to cache information about
agents, and agents themselves (for example when they will be deacti-
vated).

e security it contains a policy file and the secrets created with Tahiti.

e spool contains a directory for each combination host/port the platform
has been bound to. In each directory, a few files used by the run-time
system (such as platform properties) are stored.

e users contains a directory for each registered user (i.e., each user with
an alias in the keystore). Each directory stores preferences of the user,
such as the Tahiti window size, agent lists, etc.

16

Chapter 3

Using the Tahiti server

This chapter describes how to use the Tahiti server, that is the default server
for the Aglets platform, in order to manage agents on your system.

3.1 Tahiti GUI

This section covers the use of the Tahiti GUI (Graphical User Interface),
that is used as default user interface to the user when you launch the agletsd
command (see figure 1.2). Tahiti presents a main window, with a menu bar,
a list of running agents, and toolbar. The main area of the window is covered
by the running agent list (“agent list” henceforth), which gives information
about agents. Most of operations are aglet-dependent, that means act on
a specific agent. To specify to the server which aglet you are referring to,
you have to select the agent from the agent list clicking on its row with the
mouse; the row will become highlighted to notify that you are working on
that agent.

Following sections cover how to use Tahiti in both GUI and command
line mode.

3.1.1 The Aglet menu

Entries of the Aglet menu are displayed also in the toolbar as buttons. This
menu allows administrator to handle the agent life cycle, creating new agents,
disposing other agents, etc (see figure 3.1). Please consider that a lot of
entries of this menu act on specific agent instances, so you need to select an
agent in the Tahiti agent list before you can work on it. Each entry of the
menu is detailed in the following.

e Create
Allows administrators to create new agent instances. Once selected, a
dialog window will appear, requesting to insert the agent class name

17

Create,..

Dialog...
Dispose..,
Clone..,
Aglet Info..,

Kill...

Exit

Figure 3.1: The Aglet menu.

(fully qualified, with the name of the package), the URL and other
options (see figure 3.2).

In the creation dialog window you have to specify the class name of the
aglet you want to create. This can be specified either manually writing
the class name (with its package) in the Aglet name field or selecting
an existing class from the list of known agents. Once you have inserted
the aglet name, you can click on the Create button to create the new
agent (a new row will appear in the Tahiti main window, specifying
the agent name and other information about it). The Add to list and
Remove from list buttons allow users to insert and remove new agent
names in the known agent list. The Reload class and create button
forces an instantation of the agent class without using the class loaders
cache. This can be useful if you have modified the agent class and have
already loaded it.

The Source URL field can be useful to load agent which classes are
not in the aglet root (usually public). You can specify the location
starting from which the class name should be found, thus the agent
name results fully qualified by the URL and the class name.

Dialog

Sends a message of the kind dialog to the selected agent. This can be
useful to display user windows on request. For example, the HelloAglet
shows a dialog window only if the Dialog option (i.e., a “dialog” mes-
sage) is activated, as shown in the followin code:

public void dialog(Message msg) {

18

e cdeiizal E
Aglet narme iexamples.simple.Displayfig
Source URL
Aglets List Add to List Reranye

examples.simple.Displayaglet
examples.hello.HelloAglet
examples.itinerary. CirculateAglet
examples.mdispatcher HelloAglet
examples http.WehServeraglet
examples talk TalkMaster

Serverapp

Black Cat.helpers.aglets.agletsMiddlewara
testing. AgentCreator

Create | Cancel | Reload Class and Create |

Figure 3.2: Agent creation dialog window.

// check and create a dialog box

if (my_dialog == null) {

my_dialog = new MyDialog(this);
my_dialog.pack();
my_dialog.setSize(my_dialog.getPreferredSize());
}

// show the dialog box
my_dialog.setVisible(true);
}

public boolean handleMessage (Message msg) {
if (msg.sameKind("atHome")) {

atHome (msg) ;

} else if (msg.sameKind("startTrip")) {
startTrip(msg) ;

} else if (msg.sameKind("sayHello")) {
sayHello(msg) ;

} else if (msg.sameKind("dialog")) {
dialog(msg) ;

} else {

return false;

3

19

Oy

Disnose Aglet

‘exampIes.simple.DispIavAgIet

Close

Figure 3.3: Confirmation required to dispose an agent.

Lw i H' Fileipizs zipn Meglar B d
[ﬂ“ww

Clone Aglet

‘ examples.simple.Displayaglat ‘

‘. Clone | Cancel ‘

Figure 3.4: Confirmation required to clone an agent.

return true;

¥

Dispose

The Dispose entry allow administrators to kill a running agent. Once
you have selected an agent in the Tahiti agent list, and have clicked
the Dispose button (or have selected the entry from the menu), Tahiti
will ask you a confirmation before it proceeds (see figure 3.3). If you
are sure of you want to kill that aglet, click on the Dispose button in
the dialog window, otherwise click on Close.

Clone

The Clone entry allows administrators to create an identical copy of a
running agent. Tahiti will show you a confirmation dialog (see figure
3.4) where you can click on the Clone button in order to proceed. If
you do not want to clone the agent, click on Close. After cloning the
selected agent, Tahiti will show a new row in the agent list, since a
new agent has been created.

Aglet Info

This entry opens a dialog window with different data related to the
agent, as the key, the owner id, the creation date, class name, etc.
All information about security comes from the certificate stored in
the keystore database (see figure 2), while agent class info are those
specified at the creation time. The dialog window (see figure 3.5) does
not allow users to modify the agent information. To close the window

20

e M R MMwwwg X

~&glet Instance Infarmation:

Identity Daseddelelzb34fa

Owner Id Ch=Anonymous User, OU=Tahiti, O=Aglets.Org, C=US

Creation Date Tue Sep 07 12:37:15 CEST 2004

~aglet Class Information:

Class Mame axamples simple.DisplayAglet
Code Base atp:fflinus 4434
Varsion 1.2

Closa

Figure 3.5: Main information about an agent.

click on the Close button.

o Kill

This option is present in the menu only, and is similar to the Dispose
one, except it forces an agent to shutdown without waiting its dispos-
ing operations. In other words, killing an agent is an harsh way to
terminate an agent, while disposing it can sound more friendly. The
kill option could be useful to stop looped agents, or to quickly termi-
nate malicious agents, but the disposing one should be preferred for
normal agent shutdown.

o Exit
The Ezit option causes Tahiti to shutdown, disposing each agent that is
running. As already written, Tahiti will ask the user for a confirmation
about the shutdown.

3.1.2 The Mobility menu

The Mobility menu allows control over the migration of agents and their
activation/deactivation. Similarly to the Aglet menu, since each option works
on a specific agent instance, you need first to select an agent in the Tahiti
agent list. Each entry of the menu is detailed in the following, the menu is
reported in 3.6.

e Dispatch

This entry orders an agent to migrate to another Aglets platform.
You need first to select the agent instance to migrate, and then select

21

Dispatch...

Retract...
Deactivate...
Activate...

Figure 3.6: The Mobility menu.

.

examples.hello.HelloAglet

Gestination URL I |

AddressBook Add to AddressBook

Dispatch | Cancel

Figure 3.7: The dispatch dialog window.

the Dispatch option. A dialog window will pop up, asking for the
destination URL (see figure 3.7); URL for Tahiti (and more in general
for Aglets application) should use the ATP (Agent Transfer Protocol)
as protocol, thus for example a valid URL could be atp://somehost.
If you are running a couple of Tahiti instances on ports 4434 (default)
and 5000, you can move the example agent DisplayAgent to the latter
platform using a URL as atp://localhost:5000. When you click on
the Dispatch button, you aglet will be sent to the destination platform.
If, for some reason (the aglet cannot migrate, is not serializable, etc.)
the migration cannot be succesfully done, your agent will stay on the
current platform and a dialog window will notify to you the exception
(see figure 3.8).

The dispatch dialog window offers to you the capability to store the

22

R ——

Exception

com.ibm.aglet Request

atp://polaris:5000, Integrity=DIGEST, Confidentiality=SHORTSECRETKEY, Timaout=0 examples simple DisplayAglet

| crese |

Figure 3.8: An exception during the migration occurred.

Rermote Aglets List

Solect Server: atp/flocalhost 5000

examples.simple.Displayaglet | 483f52b2024085 1c
examples.simple.Displayaglet © le2 4ddeSa3e53%dan
axarmples.simple.Displayaglet © 758arb13901a2557

Retract | Cancel

Figure 3.9: The retract dialo window.

URL to which you are sending an agent to a list of known URLs, called
Address Book. The buttons Add to AddressBook and Remove gives to
you the capability to add and remove entries (as URLS) from the above
list. Please note that, untill you add an URL to the address
book, you will not be able to retract agents sent to that URL.

Retract

The Retract menu entry makes the opposite of the Dispatch one: it
forces a migrated agent to come back home. To do this, you need
to know where the agent is currently, thus the platform can send a
message to the other platform forcing the agent to come back home.
Once selected, the Retract option will show to you a dialog window
as that in 3.9. You need to select the remove agent server from the
Address Book list (that must be filled at the dispatch time), and then
the agent among those available on the remote host. After you have
selected the agent to come back, you can click on the Retract button.
Now the agent will be forced to come back, and you should see it
running again on your platform.

Deactivate
This option forces Tahiti to stop the execution of the selected agent,
serializing it locally, and deserializing when the agent is reactivated.

23

examples.simple.Displayscdler

Time to sleep (secondsy | 10

Deactivate | Cancel |

Figure 3.10: The deactivate dialog window.

Memaory Usage

Log

Figure 3.11: The View menu.

Tahiti will pop up a dialog window (see figure 3.10) where you can
insert a sleeping time (in seconds) for the agent. Clicking on the De-
activate button causes the agent to be deactivated.

e Activate
This option makes the opposite of the Deactivate one: activate a sleep-
ing agent. The agent will be deserialized and its execution will start
again. Please note that this command runs silently, and the only thing
you will see in the Tahiti window is a message in the status bar, that
notify the activation of the agent.

3.1.3 The View menu

This menu (see figure 3.11) offers a few tools to take care of what is going on:
memory usage and Tahiti logs. In the followin each menu entry is detailed.

¢ Memory Usage
This options opens a dialog window with a progress bar that shows the
menory usage respect the Java run-time system (see figure 3.12). The
red part of the bar represents the memory used by the Aglets platform,
while the blue bar represents the memory still available from the Java
run time environment. The dialog window is managed by a separated
thread, thus the progression bar updates itself every second.

e Log
This options opens the dialog window shown in figure 3.13, that reports
a brief log of operations done by the Aglets platform (agent creation,
dispatching, etc.). The Clear Log button causes the flush of the log
content and its reset, thus a new clean log is used.

24

Figure 3.12: The dialog window that shows the memory usage.

k3

(VT &

I~ a7
li

Create : examplessimple.Displayaglet from atp//linux4434
Create : examples.hello.HelloAglet from atp://linux4434/

EL_

Close

Figure 3.13: The log dialog window.

e Java Console
This option is not exploitable.

3.1.4 The Options menu

This menu, shown in figure 3.14, allows administrators to change settings
about the whole aglet server engine, to set up protections and policies, and
so on. In the following, a detailed explaination of each entry is given.

e General Options
This entry opens a dialog window that allows to set up global pref-
erences, related to the start up of Tahiti and to its look feel (see
figure 3.15). The Font section allows the user to select which font
Tahiti should use to display information, with its style (e.g., bold) and
its size (in points). The effective use of the selected font depends on
which fonts are available to the Java system. The List view section
allows to set up how Tahiti have to show agents in the agent list. The
order can be ascent/descent, and can be done by the agent class name,
the creation time, the event order (i.e., what happened to the agent),

Ceneral Preferance

Metwark Prefarance

Security Preference

Server Preference

Figure 3.14: The Options menu.

25

(Ol GeremiPreferences |) 1 | | HEY
Fon
Proportional Font: Lucida Sans _-'| plain _‘ 12 _|
Fixed Font Lucida Sans _.| plain _.-‘ 12 ;-|
rList ¥i
Order Kay: event order 7‘
Sott Order: ascent _‘
Display Precision: wmplete _‘
Startun
.......
On Startup:] Launch Startup Aglet
!
Cache Contral
Clear Class Cache Now ‘
Close | Restore Defaults

Figure 3.15: The general options dialog window.

etc.

The Statup section allow you to select a specific agent to be loaded
at the Tahiti start time. You have to click on the On Startup check
button and then to enter the fully qualified agent class name in the
following text field.

The Clear Class Cache Now button of the Class Cache section, al-
lows administrator to reset class loaders caches, thus new instances
of already loaded agents will be created after a reload of their class.
This can be useful if you are testing an agent which class is changing
frequently.

To apply all modifies you have done thruough the above dialog, you
have to click on the OK button, while the Close one will not apply
modifies. The Restore Defaults button reset any changes to the Tahiti
default.

Network Preferences

This entry opens a dialog window that allows users to manage net-
work settings, like the use of proxies, HI'TP tunneling, authentication
requests, and so on. The dialog is shown in figure 3.16.

The Http Tunneling section allows you to specify if Aglets should ac-
cept http requests, if it must send agents through the http protocol
(useful if you are running Tahiti behind a firewall), and which proxy
should be use. You can specify either a DNS host name or an IP ad-
dress, along with the port the proxy is accepting connections on. You
can also specify a domain to which dispatch agents without passing
through the proxy, that means with a direct connection.

26

M) o 2

-Hitp Tunneling
_|Aaccept HTTP Tunneling Reguest

_|Use HTTP Proxy

ProxyHost ! Fort: |

Do not usa the proxy server for domains

rAuthentication

[Do Authentication on ATP Connection
| Use Secure Random Seed
Create a new shared secret ‘ Remove a shared secret |
Irport a shared secrat ‘ Export a shared secret |

Other:
[_|Accept HTTP Reguest as a Message |

Close | Restore Defaults

Figure 3.16: The network preferences dialog window.

-, Cma £ E NEW Shared| Secrer Iglx.

Create a new shared secret

Domain name

Creator's key alias

Creator's key password

Cancel

Figure 3.17: Adding a shared secret.

The Authentication section contains several buttons to configure secu-
rity on incoming connections. The Do Authentication on ATP Requests
checkbox forces, if checked, authentication on each incoming connec-
tion over ATP, that means on each incoming agent.

The Create a new shared secret button allows users to create new se-
crets for a specific domain. The button will open a dialog like the one
in figure 3.17. The user has to enter a domain and a couple username
(called alias) and password that must match a couple in the keystore
database.

The Remove a shared secret button allows you to remove a secret se-
lecting it from the list of registered secrets, as shown in figure 3.18.
Please note that you have to provide the password that holds the alias
(i.e., the username) the secret has been created with.

The Ezport a shared secret button opens a dialog as the one shown in
figure 3.19, that allows users to select the domain the secret is associ-
ated to, and to store it in a file which name is written in the File name

27

FOIC Remove asharedsset) E £

Remove a shared secret

unimo.it

Domain name list

Fassword I

Cancel

Figure 3.18: Removing a shared secret.

‘vl' SExporta share al x|

Export a shared secrat

unimo.it

Darmain narms list

Filename IIunimo.it.sec

ﬂ Cancel

Figure 3.19: Exporting a shared secret.

text field. Once you have saved the secret in the file, Tahiti will shows
you a dialog window with the absolute path of the secret file, thus you
can easily find it (see figure 3.20). The Import a shared secret button
opens the dialog window shown in figure 3.21, which asks the user for
the file name of the secret to import.

e Security Preferences
This entry opens a dialog like the one in figure 3.22, that allows admin-
istrators to set up Java permission for agents and other Java classes.
The window is splitted in two main parts: on the left the user can select
the codebase of a Java classes (either an agent or a normal class), on the
right the user can assign permissions. The use of this window is very
similar to the use of the Java policytool program. Furthermore, since it
works as the Java security mechanism, all permissions will not be ex-

Exported

The shared secret of domain ‘unima.it’ is exported into a fila 'fhome/luza/ aglets/users; anony nous/ unimo.it.sec'

Close

Figure 3.20: Tahiti gives you information about the full path of the secret
file.

28

Cancel

Figure 3.21: Importing a shared secret.

FileSystem =

- FileSystam

ﬂ remoye

‘ "+, "read,write"

CodeBase

Signed by H File/ Directory

Owned by |} Actions feadwrite

Close

Figure 3.22: The security options dialog window.

plained here; you can find more details on the Java 2 documentation.
Modifies will be applied to the /.aglets/security/aglets.policy
file. Please take care when using this option, since it does not
work always right; thus you should check that the policy file has
changed.

e Server Preferences
This entry opens a dialog window (see figure 3.23) that allows users to
set a few parameters like the server public root, that is the directory
where Tahiti searches for agents. Unfortunately, this option seems to
have a few bugs and does not work very well.

3.1.5 The Tools menu

This menu gives users access to a few tools more related to the Java virtual
machine than to the Aglets platform itself. Figure 3.24 shows the menu
appeareance, while in the following you can find a detailed description of
each entry.

e Invoke GC
The selection of this entry will force a call to the Java garbage col-
lector, in order to force a memory check and to free no more used

29

homelucajtmp) —= tmp,
thomejlucatmp, - locationl,

Figure 3.23: The server preferences dialog window.

Figure 3.24: The Tools menu.

30

objects/agents. You can use this menu entry if you believe your sys-
tem memory has not been freed, or after a large agent killing.

e Threads
This option causes Tahiti to dump a brief information about all ex-
isting threads in the JVM. The dump is displayed in the Java console
(terminal), and is similar to the following one:

{java.lang.ThreadGroup [name=system,maxpri=10]}
+ Threads

Thread [Reference Handler,10,system] alive
Thread[Finalizer,8,system] alive

Thread [Signal Dispatcher,10,system] alive
Thread [CompilerThread0,10,system] alive

e Debug
The only visible thing is the showing of the string “Debug oft” in the
Java console. Probably this option was used to enable debug prints for
Tahiti components.

e Ref Table
Does not show anything. Probably it was a dump mechanism for the
Tahiti and Aglets internal reference table.

3.1.6 The Help menu

This menu does not provide a real help, rather credit information. Most of
the entry are not working in the current release of Tahiti due to the absence
of an external program, called openurl, used to point the web browser to a
web page. For this reason, do not worry to much if you see exception in the
Java console when you select this menu entry.

This menu will probably be fixed in a future release of the Aglets plat-
form.

3.2 The Tahiti command line

You can run the Aglets server also from the command line. To enter in the
command line, specify one of the following options to the agletsd command:
-nogui, -noconsole, -daemon or -commandline (it does not matter where
the option is placed respect the other parameters). Tahiti will start in com-
mand line mode, asking for the username and the password as for the GUI
mode.

31

Once the user is logged, Tahiti presents a command prompt that al-
lows administrators to manage agents. The command line prompt is not so
powerful as the Tahiti GUI, but can be faster and can be used in extreme
situations (e.g., when the X server crashes). You can ask for help writing
“help”, and you will see a list of available commands:

> help

help Display this message.

shutdown Shutdown the server.

reboot Reboot the server.

list List all aglets in the server.
prompt Display or changes the prompt.
msg on|off Message printing on/off.

create [codeBase] name Create new aglet.
<aglet> dispatch URL Dispatch the aglet to the URL.

<aglet> clone Clone the aglet.

<aglet> dispose Dispose the aglet.

<aglet> dialog Request a dialog to interact with.
<aglet> property Display properties of the aglet.

Note: <aglet> is a left most string listed
in the result of list command.

As an example, if you want to create a new agent, you have to use the
create command:

> create examples.hello.HelloAglet

and the system will reply with a message showing the operation result, such
as:

> Create : examples.hello.HelloAglet from atp://linux:4434/

If you want to list all agents running in the platform, you have to use the
list command; the system will show a list of all agents (in the following
example only one is running):

> list
> agletO [examples.hello.HelloAglet]

The first word (“aglet0”) represent the agent identity, useful for other com-
mands. For example, if you want to dispose the above agent you have to
specify the identity to the dispose command:

> agletO dispose
Removed : agletO
> Dispose : examples.hello.HelloAglet

For a complete list of available commands, digit “help”. To exit from the
command line mode you have to shutdown Tahiti, that can be done with the
shutdown command (without any option).

32

Chapter 4

Developing agents with Aglets

This chapter covers basic issues about developing agents with the Aglets
library. In the following section it will be shown how to configure main
development environments to support Aglets, how to compile and run you
own agents and how to explore the library API.

An aglet (i.e., an agent able to run on the Aglets platform) is a simple
Java class that must have as base class com.ibm.aglet.Aglet. To define
the aglet behaviour you have to override methods of the base class, at least
the run() one, and that is all you need to get a complete aglet.

4.1 Configuring your IDE to use the Aglets library

The Aglets library is composed by a single jar archive, called aglets-x.x.x. jar
where x.x.x means the library version number (e.g., 2.0.2). In order to com-
pile your own agents, you must have the above jar in your classpath. The
following subsections describes how to compile agents with different tools
and IDEs.

4.1.1 Using command line tools

You can develop agents as you do with normal Java programs, that means
you can write your Java file(s) with your favourite editor, compiling then
them with the command line compiler (e.g., javac, jikes). Supposing you
have created and saved in a file called FirstAglet. java the following agent:

import com.ibm.aglet.*;

public class FirstAglet
extends Aglet
{
public void run(){
System.out.println("\n\tHello\n");

33

}

you can compile it from the command line, after ensuring you have the
Aglets library in your classpath. For example, supposing you have the Aglets
platform installed in /java/aglets, you can do the followin:

export classpath=$classpath:/java/aglets/lib/aglets-2.0.2.jar
in a Bash shell, or something like:
set classpath=jclasspathi;c:\javalaglets\lib\aglets-2.0.2.jar

on a Microsoft Windows machine.
After that, just compile your agent from the command line:

javac FirstAglet.java

Even if aglets are like other Java classes, they cannot be run as stand-
alone programs, thus you have to run agents into the platform. Before that,
you must make agents reachable by the platform itself, that means you must
have the agent (compiled class) in the server public root, that is by default
the folder public of the Aglets platform installation. In other words, you
have to copy the classes of your agents under the above folders, thus you can
specify the aglet class name in the creation dialog (see figure 3.2).

Please note that adding the directory where your classes resides to the
classpath variable will not work. It seems as Tahiti has a few bugs in the
management of classes and classpath.

4.1.2 Using IBM Eclipse

You have to instrument Eclipse accepting the Aglets library in the project
you are working on. Supposing you have already defined a project, steps
required to use the Aglets library are the following:

1. select Import from the File menu

2. chose the library:
in the opened dialog window (see figure 4.1), chose Zip file and click
on Next button. After that, you have to browse the local filesystem in
order to find the Aglets library jar (see figure 4.2), then you have to
click on the Finish button.

3. test the library:
you should now see the library packages in the project folder. Import-
ing the package should give you no errors.

34

(e B I

Select

Import resources from a Zip or Jar filz on the local file system

Select an import source:

4 Checkout Projects from CV3

4 Existing Ant Buildfile

% Existing Project into Workspace
LizExternal Features

<& External Plug-ins and Fragments
[File system

5, Team Project Set

[& Zip file

I Uq Next > m“) | Cancel |

Figure 4.1: Importing a package in Eclipse, step 1.

Zip file =
Import the contents of a Zip file from the local filz system. E‘ P
From zip file: |/javal/aglets/lib/aglets-2.0.2 jar =) Browse...

» B/
(. Filter Types...)| Select All J | Deselect All J
Into folder: [aglets_patch Browse...
_J Overwrite existing resources without warning
|| <Back | U U ‘ Finish ' | Cancel |

Figure 4.2: Importing a package in Eclipse, step 2.

35

=) Local Directory
S Archive Files

,g Wersion Cantrol

Figure 4.3: Importing a package in Netbeans, step 1.

N e s b

Steps Select Archives

1. Select Filesystem Type

2. Select lems to Mount ek ‘E b v‘ @ @ @ @E

[yini
[Y1ea
[ma
Oy mat
[mai
[y me
o [y me

=
]
B
[
]
[co
[ere
[y ere
[

File Name [aglets-2.0.2 jar |

Files of Type: | Archive Files (*jar, "2ip, "war, ".car) -

Figure 4.4: Importing a package in Netbeans, step 2.

4.1.3 Using Netbeans IDE

The Netbeans IDE uses an approach similar to the IBM Eclipse one: you have
to define in each project jars that must be included. To import the Aglets
library, supposing you have already created a project, do the following:

1. mount the library:
right click on the project name in the file system view (usually on your
left), and select mount from the contextual menu. In the submenu,
select Archive, as shown in figure 4.3.

2. choose the library:

browse the local filesystem to find the library (see figure 4.4, then click
on the Finish button.

3. test the library:
you should now see the library packages in the project folder. Import-
ing the package should give you no errors.

4.1.4 Using JBuilder

To quickly enables the Aglets library in the Borland JBuilder, you have to
follow the steps below:

1. select Configure JDKs from the Tools menu.

36

[0 Froject | JDK Settings

Déﬁ;:;:‘:;sim T Name: java version 1.4.2_01-b08 || Rename.. |
JDK home path: /sviluppo/java/[Builderc/idk. 4 Change...
[JBuilder e

[Atways debug with - classic

[/sviluppo/java/|BuilderX/jdkL4/jre/lib/ charsets.jar] - | Add.
[/sviluppo/java/ BuilderX/jdkL4 jre/lib/ rtjar]

[/sviluppo/java/ JBuilderX/jdkL.4 fjre/lib/jce.jar] EdiL.
[/sviluppo/java/ JBuilderX/jdkL4 jre/javaws /javawsjar]

[/sviluppo/java/ |BuilderX/jdkL4/1ib/tools.jar] Remove

[/ sviluppo/java/|BuilderX/jdk1.4/lib/dtjar]

Move Up
Move Down

New.. || AddFoider.. || Delete

Figure 4.5: The JBuilder JDKs configuration window.

2. choose the library:
push the Add button and browse your local filesystem in order to find
out the Aglets library jar, and then select it.

3. check the importation of the library:
once you have selected the library, you should see it at the bottom of
the jar list in the dialog window (see figure 4.5), then click on OK.

Please note that, doing the above, you will find the Aglets library in all
projects you will create.
4.2 Base Knowledge

This section provides basic information about the development of an aglet.
In the following you will find which main methods you have to override, how
to manage incoming messages and how to catch events.

4.2.1 Main Methods of an Aglet

Aglets are agent that follows an Applet-like development way, that means
you have to override a few methods that will be called from an external entity
(the Aglets run-time system) during the agent life. The following piece of
code shows the main methods you should override.

package examples.goofy;
import com.ibm.aglet.*;

public class agletD extends Aglet{

public void onCreation(Object init){

37

System.out.println("Agent created "+init);

}

public void run(){
System.out.println("Agent running");

}

public void onDisposing(){
System.out.println("Agent quitting");
}

4.2.2 Message handling

Aglets exploit a communication system based on message passing: two
agents that want to communicate each other have to exchange a message.
Messages are instances of the Message class, and their kind is specified by a
string. An agent that wants to explicitly manage messages has to override
the handleMessage(..) method, returning true in the case the message is
managed by the agent, false otherwise. The following piece of code shows
an agent that handle all messages; you can launch it and send dialogs mes-
sages thru the Tahiti GUIL.

package examples.goofy;

import com.ibm.aglet.*;

public class agletE extends Aglet{
public void run(){

System.out.println("Agent running");

}

public boolean handleMessage (Message msg){
System.out.println("Received a message "+msg.getKind());

return true; // if the message is used

}

There are a few concepts that must be clear when working this message
handling. First of all, each aglet executes within a thread, but threads are

38

managed by the platform and can be shared among agents for efficienty.
The efficienty of this approach can be understood thinking at a buyer-seller
example: image a couple of agents, with one playing as a seller and one
playing as a buyer. In this situation, it is not needed that the buyer agent
is active before the seller has put a good on sale, thus there is no reason to
use a thread-per-agent approach. Furthermore, the seller can simply send
a message to the buyer specifying the good on sale, and then should wait
the answer of the buyer (i.e., should deactivate or suspend until an answer
comes). Following this example, it should be clear that the number of active
threads (i.e., agents) could be reduced at one per time. Aglets exploits
this condition in its whole design: if agents can share the same thread, no
additional threads will be created. In other words, the number of agents and
threads are not strictly related.

Due to the Aglets thread model, it is important to understand that each
message is delivered by a thread, that can be different from the one the agent
runs (or have run). Since aglets are implicitly synchronized, a message can
be delivered if the agent is active and running, that means while your agent
is in the run() method (or another method). In fact, while the agent is in
the run() method (or another one), there is a thread active in the agent
itself, and another thread (the message deliver thread) cannot deliver the
message because of the Java syncrhonization.

From the above considerations, it is possible to see how an agent per-
forming an (in)finite loop will be unable to receive and manage any incoming
message. Nevertheless, there is a way to force an agent to release the lock,
and this can be done with the exitMonitor () method, that causes all wait-
ing messages to be dequeed and, at the same time, all threads locked on a
waitMessage() to be resumed. Please be aware that forcing an agent to
release locks could produce race conditios.

4.2.3 Events

Aglets supports an event/event listener model, where an agent can register
event listeners to particular kind of events, thus it can trigger those events.
There are mainly three kind of events, tied to different scenarios of the agent
life cycle: cloning, mobility and persinstency. Table 4.1 shows each kind of
event, with types and event listener that can be associated to.

4.3 Code Examples

This section provide a few code examples about running aglets. The code
shown here is meant for a didactic use only, and does not preptend to be
professional.

39

Event kind (class
name)

Time

FEvent listener

Method of the event lis-
tener

activation

CloneEvent before cloning CloneListener onCloning(..)
CloneEvent after cloning ClonelListener onClone(..)
MobilityEvent before migrating MobilityListener onDispatching(..)
MobilityEvent when the agent ar- | MobilityListener onArrival(..)
rives
MobilityEvent when the agent is | MobilityListener onReverting(..)
being retracted
PersistencyEvent | after the agent acti- | PersistencylListener | onActivation(..)
vation
PersistencyEvent | before the agent de- | PersistencyListener | onDeactivating(..)

Table 4.1: Available events in Aglets.

4.3.1 A base agent

The following class shows a simple aglet that, once loaded, prints a few
messages on the standard output (i.e., the console where you launched the

agletsd command).

import com.ibm.aglet.*;

public class FirstAglet

extends Aglet
{

public void run(){
System.out.println("\n\tHello\n");

for(int i=0;i<10;i++){
System.out.println("\n i is "+i);
}
}

4.3.2 Event Listeners

The following code example shows how MobilityListener, CloneListener
and PersistencyListener can be used. First of all, have a look to the

listener class:

package examples.goofy;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

40

public class myListener

implements MobilityListener, ClonelListener, PersistencylListener

{

[1117771777711771177

// mobility listener methods

[1177177177771117177

public void onArrival(MobilityEvent event){
System.out.println("Agent arrived "+event);

}

public void onDispatching(MobilityEvent event)<{
System.out.println("Before moving..."+event);

}

public void onReverting(MobilityEvent event)<{
System.out.println("Before coming back home. .. "+event) ;

}

[1777171777711117777

// clone listener methods

[1777171777711117777

public void onClone(CloneEvent event){
System.out.println("I’m the clone "+event);

}

public void onCloned(CloneEvent event){
System.out.println("A clone of myself created "+event);

}

public void onCloning(CloneEvent event){
System.out.println("Someone is cloning myself "+event);

}

[1177177777111117777

// persistency listener methods

[1177171777711117777

public void onActivation(PersistencyEvent event)<{

41

System.out.println("Activating "+event);

}

public void onDeactivating(PersistencyEvent event){
System.out.println("Deactivating "+event);

}
}

The above listener defines methods to catch events at different time, as
explained by the code itself. The following agent registers the above listener
and use it to trigger events:

package examples.goofy;

import com.ibm.aglet.*;
import com.ibm.aglet.event.*;

public class agletC extends Aglet{
public boolean move=true;

public void onCreation(Object init){
// create a listener object
myListener listener = new myListener();

// register a mobility listener

this.addMobilityListener ((MobilityListener)listener);

// register a clone listener
this.addClonelListener((ClonelListener)listener);

// register a persistency listener
this.addPersistencyListener ((PersistencylListener)listener);

}

public void run(){
System.out.println("HELLO!");

}

For example, after a dispatching, mobility events are triggered and the
agent prints, in the source console, the following statements:

42

Before moving...MobilityEvent [DISPATCHING]
while in the destination console prints:

Agent arrived MobilityEvent [ARRIVAL]
HELLO!

To better understand how event listeners work, execute the above agent
and try cloning, dispatching and deactivating it; have a look at what mes-
sages are printed out in all the consoles.

4.3.3 Remote Messaging

The following code shows how agletA can sends a remote message to the
agent agletB. Please note that it is needed to know the agletID of the
remote agent to communicate with it.

package examples.goofy;

import com.ibm.aglet.*;
import java.net.*;

/%%

* Clone an agent and send a remote HELLO message to it.
*/

public class agletA extends Aglet{

public void run(){
try{

// get the aglet context
AgletContext context = this.getAgletContext();

// create an agletB instance

AgletProxy toMove = context.createAglet(null,
"examples.goofy.agletB",

null);

// save the new aglet ID

AgletID remoteID = toMove.getAgletID();
System.out.println("The new agent has ID = "+remotelD);

// migrate the new agent

43

String remoteContext = "atp://localhost:5000";
URL url = new URL(remoteContext);
toMove.dispatch(url);

// get the remote proxy
AgletProxy remoteProxy = context.getAgletProxy(url,
remotelD) ;
// send a message to the remote agent
remoteProxy.sendMessage (new Message ("HELLO"));

}catch(Exception e){
System.out.println("Exception "+e);
}
}

[11777777771717177777
// agletB

package examples.goofy;

import com.ibm.aglet.*;

/*
* Receive a remote message.
*/
public class agletB extends Aglet{

public void run(){
try{
// get my ID
AgletID myID = this.getAgletID();
System.out.println("\nMy ID is "+myID);

}catch(Exception e){
System.out.println("Exception "+e);
}
}

// handle the message
public boolean handleMessage (Message msg){

44

if (msg.sameKind ("HELL0")){
System.out.println("HELLO msg received");
return true;

return false;

}

Please note that, even if the getAgletProxy(..) method called in the
above code is deprecated, a call to the no-deprecated method such as:

AgletProxy remoteProxy = context.getAgletProxy(remotelD);

will not work, since it can work only with the local agents. The use of
the MAF (Mobile Agent Finder) will work better, but at the moment there
is not a lot of documentation about how to use it in Aglets.

4.3.4 A sleeping aglet

In general, it is not possible to make an aglet sleeping, since threads should
not be managed directly from the developer. You can use something simi-
lar, but more expensive, to simulate sleeping, that is deactivation: you can
deactivate and reactivate an agent, but you must be careful since deactiva-
tion means that the agent is serialized and its execution restarts from the
beginning. This means that the following code will run undefinitely:

import com.ibm.aglet.*;
import java.io.*;

public class agletF2 extends Aglet{
public void run(){
for(int i=10;i>0;i--){
System.out.println(i+" seconds left!");
try{
this.deactivate(1000);
}catch(I0Exception e){
System.out.println("Ops!");
}
}

45

Since, after a reactivation, the execution of the agent restarts from the
run() method, the agent will restart the for loop from the same point (i.e.,
i=10). Instead, the following code is correct and works:

import com.ibm.aglet.*;
import java.io.*;

public class agletF extends Aglet{
int i=10;

public void run(){
for(;i>0;){
i--3
System.out.println(i+" seconds left!");
try{
this.deactivate(1000);
}catch(I0Exception e){
System.out.println("Ops!");
}
}

Nevertheless, it should be clear how deactivation cannot substitute the
sleeping mechanism, and that making a thread to sleep will produce strange
effects on the whole platform (such as locking the message passing mecha-
nism). This is due to the fact that the Aglets platform uses a set of threads
(i.e., a pool) to work efficiently, thus the same thread can be shared by dif-
ferent agents. There is a trial feature, done with the method suspend(..)
of the class AgletProxy that can be used as a sort of sleeping command.
Unfortunately, it does not work yet, and in fact the following agent causes
the thrown of an I1legalThreadStateException:

import com.ibm.aglet.*;

public class agletZZ extends Aglet{

public void run(){
try{

for(int i=10;i>0;i--){
System.out.println(i+" seconds remaining");
this.suspend(1000) ;

b
}catch(AgletException e){

46

System.out.println("Ops!");

}

Warning on this code example Please note that running the agent

agletF2 will have tremendous effects on your system. Due to the Aglets

thread management, you will not be able to destroy (either by killing or de-

activating or disposing) the running agent, while the latter will run forever.

Even stopping an restarting the Tahiti server will not solve the problem, thus

the only things you can do is to perform a clear start (see the FAQ section) or

to manually remove the spool file in the SHOME/ .aglets/spool/ hostname @runningPort / agletID
file, and then restart the Tahiti server.

47

Chapter 5

FAQ & Configuration Files

This chapter contains a reviewed and update FAQ, and a list of the original
configuration files shipped with the version of the platform. You should first
have a look to this chapter before posting a problem over the mailing lists.

5.1 FAQ

This section presents a list of Frequently Asked Questions about Aglets. The
list has been changed from the old FAQ), since a lot of questions were related
to earlier versions.

e What does AWB stands for?
AWB means Aglets WorkBench, and it was the original name given by
IBM to the Aglets platform and library. Today’s common trend is to
use simply Aglets (with the capital 'A’) to indicate both the library
and the platform, and to explicitly specify the latter when required.

e What does JAAPI stands for?
JAAPI means Java Aglet APL.

e What is Fiji?
Fiji was a project to enable Aglets capabilities in a web browser. So
far, the project is no more mantained and available.

e What are differences between the IBM Aglets platform and
the open source one?
IBM does no more mantains Aglets, thus the version you can download
by their server is the 1.03 (or 1.1 beta), while the version available at
Sourceforge is greater than 2. Of course, the open source version is
more update and functional of the 1.03 version, thus you should use it.
Furthermore, the version of IBM was thought as commercial software,
that means you requires a license to run it.

48

e Can I run Aglets on Java 2 (JDK1.2 +)?
Yes, of course, and in fact this manual is thought to run Aglets over the
Java 2 platform. The first versions of Aglets was developed over Java
1 (JDK 1.3), and often this causes confusions to newbies. Running
Aglets 2 over Java 2 is the best way to get the platform working.

e Are there any archives of the Aglet Mailing list?
Yes, visit the Aglets web page at Sourceforge.net to get information
about mailing lists, archives and how to subscribe.

e I need some help! What should I do?
Reading this manual is a good start. Unfortunately, at time of writing
this manual there are not a lot of documentation sources avaiable.
There are still a few pages at the IBM Tokyo Research Laboratory
web site, but they are quite old and no more mantained. See the
Aglets web site at Sourceforge.net to get on-line help.

If you need to report some problems or bugs to the mailing lists, please
include as much information as possible, in order to allow other par-
ticipiants to rightly understand the problem. The information you
should include are:

1. the version of the platform;
2. the operating system;

3. the path where you haeve installed the platform (for example
/home/luca/aglets);

4. the exception stack trace (if an exception is thrown);

5. in the case of a SecurityException, the content of your java.policy
file;

6. the code that you believe is causing the misbehaving;

7. a dump of the following environment variables (if set up): class-
path, JDK HOME, JAVA HOME, AGLETS HOME. You can
obtain the variable value writing in a console:

Unix - Linux
echo \$classpath
echo \$JDK_HOME
echo \$JAVA_HOME
echo \$AGLETS_HOME

Windows

echo \/classpath\}
echo \}JDK_HOME\%
echo \%JAVA_HOME\Y
echo \}AGLETS_HOME\Y%

49

Be quite and polite when asking help, nobody wants to be bothered
with others’ problems. If you find the answer by yourself, post a mes-
sage as a reply to indicate the answer; it will be interesting for other
people and will let them to not waste their time. Finally, do not repeat
the message if you do not get an immediate answer, let people the time
to understand and to reply.

Are there any public Aglets servers I can send my aglets to?
There were a few trials about a public aglet server, but at the best of
my knowledge, there is no one server running now.

When I launch Tahiti I get: “Please set HOME environment
variable!”

This indicates an anomal situation in your operating system: check
that the HOME variable points to your home directory. Contact your
system administrator to fix this problem, that is not related to Aglets.

When I try to access a local file with my aglet the server
throws java.jang.SecurityException although all the necessary
permissions are set.

There is a little known feature of Tahiti (OK, call it a bug ;) that
when Tahiti is installed, it creates a security domain "file:///*/" and
all permissions are given to this domain. It should mean that any aglet
having its codebase on this machine can access any file. But it’s not
true. You have to create another security domain describing exactely
the path to the codebase of the aglet, grant necessary permissions and
then it works.

When I try to get my Aglet to access the file 'test.txt’ I get
a FileNotFound exception?

When attempting to open a file, any path to a file is relative to the
directory from which the Aglet was created. Therefore, the solution is
that you should specify the file absolute name like this:

FileInputStream inputStream = new FileInputStream("c:/test.java");

You can use a single slash (/) in Unix like systems and Windows, or
you can specify a double backslash in Windows.

Can I run Tahiti with no net connection on Microsoft Win-
dows 957
Yes, even if this system is quite old and I suggest you to run Aglets
over a greater system (have you ever thought passing to Linux?). If
you have troubles running Aglets over Microsoft Windows 95, try the
following:

50

1. edit the hosts text file that is under the WINDOWS folder and add
the loopback address entry: 127.0.0.1 localhost;

2. start Tahiti with the -resolve option.

e I want to send my aglet around to lots of different hosts and
to pop up a window at each host, but when I try nothing
happens, or I get an exception.

A permission to create top level window is given to any aglet in default
aglets security policy. If you want to modify security preferences, do
the following instructions on every host where your aglet will visit.

Add the following line into files "aglets.policy":
permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

¢ Why would not my stand-alone server take my environment
variables into account? This is a feature of the stand-alone servers,
which is they do not take the Aglets related environment variables into
account by default. You should explicitly put the AGLET PATH and
AGLET EXPORT_ PATH on the java command-line when launching
a stand-alone server (as far as I know, at least).

For example under unix, if your server is called StandAloneServer:

java -Daglets.class.path=\$AGLET_PATH \
-Daglets.export.path=\$AGLET_EXPORT_PATH StandaloneServer

e Can an aglet perform SNMP operations? Yes - an aglet can
perform SNMP operations by using a Java class that provides SNMP
operations and that can be serialized. A good package to look at is
jmgmt - it is small, straightforward, and has all source included. It is
available from http://i31www.ira.uka.de/ sd/manager/jmgmt/.

Good overviews of various packages can be found at: http://www.mindspring.com/ jlind-
say/javamgmt.html and hitp://wwwsnmp.cs.utwente.nl/software /pubdomain. html

Some of the packages use threading- and you have to be careful when
you serialize agents that use threads. The other big restriction on some
of the packages are that they have a commercial license, even if you
are doing not commercial research activity.

e How can an aglet be used as a HTTP Server?
Fist of all, you should take a look to the example agent WebServerAglet. java
shipped with the Aglets platform examples. Please note that using an
aglet as an HTTP server has a few drawbacks: devoping an http server
is not a trivial task and it is subject to security risks, thus you should
be sure of the quality of your server before making it available to third

51

parties. Furthermore, even if the Aglets platform has a good thread
system, it can handle threads in a way that does not fit very well your
needings. Finally, running an HTTP server embedded in an aglet,
means that your server will be available thru the Aglets running port.
For example, if you are running Tahiti at the host myHost, port 4434
(the default for Tahiti), you will be able to reach your HTTP server at
the address http://myHost :4434/.

You must also set the options in Tahiti as specified in the comments.
If you are coding/adapting the sample - make sure to include the line:

getAgletContext () .setProperty("name.test", getAgletID());

since this is how Tahiti identifies the aglet to forward the HT'TP request
to.

Another option is to look at using Fiji. The disadvantage is that the
status of Fiji is uncertain right now. Another option is to look at find-
ing/coding Java classes to listen for incoming HTTP requests. There
are quite a few HTTP servers written in Java out on the web. De-
pending on the requirements for the web server (i.e., response time,
threading, etc.), there are a few different servers to use.

Can an aglet work with other Servers (HTTP, FTP,etc)?
The general answer to this question is “yes”. Nevertheless, before start
developing your aglet-based server/client, you should take care of a few
things. First of all, you must know the protocol, or at least you must
have a Java library to interface to the protocol. The Java classes used
(in the case) by the aglet must be compatible with the JRE and the
Aglets library version you are running, and most important, if they
must travel with the aglet, they must be serializable. The latter re-
quirements (serialization), can be overtake if the aglet wil be stationary
on a specific host, thus it will never be serialized (of course, this is true
if you will never deactivate the aglet!).

How does Aglets determine an hostname?
Using the configuration of your system, typically using the DNS (Do-
main Name System).

Can an aglet use SSL?

(For some good background information on the security model check
the aglets book in Chapter 10) It depends on the availability of SSL
Java libraries, and how they are compatible with the Aglets library
you are running.

How is memory used when a message is sent between two
aglets?

52

You can monitor the memory activity using the Tahiti memory tool:
open the Tools menu and then select the option Memory Usage.

How can the sleep operation be used in an aglet?

Please note that threads are hidden to aglets, thus you should not use
normal Java thread operations in your aglets. You should use a timer
or something similar to obtain the required feature. Using sleep(..)
is dangerous, since the message passing mechanism will be locked untill
the sleeping thread wakes up. There is an experimental feature, called
suspend(..) that could work.

How can local and remote Aglets discover each other and
communicate?

There are a few options available to attempt to discover remote con-
texts, depending on what you need to do.

If you want to create a local agent, dispatching then it to a remote
context and communicate with the now remote agent, you need to get
the remote agent proxy. The proxy discovering can be done with the
MAF architecture (at the moment there is no documentation on how to
use the MAFFinder in your programs). Another option is to manually
keep a track of where your remote agents are, and this can be useful
to build critical mission systems, where the MAF architecture can fail
down.

See the code example sections.

I got a message similar to java.util. MissingResource Exception:
Can’t find bundle for base name tahiti, locale en_ US but I
do not know how to fix it

As you can see the problem is caused by the ResourceBundle class,
which is used for localization. If you look in the lib directory of your
Aglets installation, you can see a text file called tahiti.properties, which
contains menu and button entries for the tahiti window. You have to
set your classpath to the lib directory, thus the above file can be read
by the ResourceBundle class.

I want to add an agent to the agent list, thus when I click on

the Create button I can choose it directly. How can I do this?

The first and common way of doing it is thru the creation dialog win-

dow. Otherwise you can write the agent in a text file, placed in the

user’s home directory, and in particular in $home/.aglets/users/username/aglets.propertie
and add the agent class name to the line that contains the property

aglets.agentList. Class names must be add as separated by a blank

space, without new line characters.

53

e What is FIPA?
FIPA means Foundation for Intelligent and Physical Agents, and is
a no-profit organization that defines agents’ standards, such as com-
munication languages (called ACLs), interoperability protocols, and so
on.

e Is Aglets 2.0.2 FIPA compliant?

No. Aglets is not FIPA compliant, since it has been developed when
FIPA was only a proposal. Furthermore, in those days, there was
another standard: the MASIF (Mobile Agent Systems Intercommuni-
cation Facility). Due to this Aglets is MASIF compliant, even if there
is not a lot of documentation (or better, there is no documentation)
regarding MASIF in Aglets and how well it works. It must be no-
ticed that Aglets is RMI compliant, thus you can use it in combination
with the Java’s RMI services. Please note that the fact that Aglets is
not FIPA compliant does not means that developers do not want that
standard, it is simply a developing lack! Maybe one day Aglets will be
FIPA compliant....

e Is FIPA so important?

It is difficult to answer to this question, since it depends on a lot of
opinions and point of views. FIPA is in general good, but as a most
of standards, it could not reflect what developers really wants (usually
simplicity and performances). It depends on what you are going to
develop if Aglets can be the right choice: if you have to interoperate
with a FIPA systems, please choose a FIPA compliant platform (such as
JADE). However, please note that there are other platforms which do
not adhere to the FIPA standard, such as DIET, while other platforms
implements both FIPA and MASIF (such as Grasshopper).

e Do I need to install Aglets on every machine I want to send
an agent to?
Yes, or at least you have to write a program which can act as an agent
server (i.e., a Tahiti substitute) by your own. The fastest way to get
your aglets running is to install Aglets on everu host you want to send
agents to.

e Is there another font of documentation? I often hear some-
thing about the Aglets book...
You can find a few web pages over the Internet that discuss several
Aglets related arguments, but please take care that these pages could
be out of date (i.e., too old regarding the Aglets version you are run-
ning). There is an Aglet book,Programming and deploying Java (TM)
Mobile Agents with Aglets, by Danny B. Lange and Mitsuru Oshima,
but it is old (it is related to the Aglets 1.0 version), and a lot of things

54

have changed since it has been published. I don’t believe you need the
Aglets book to develop agents using Aglets.

e Can Aglets run over a PDA or a smart device?
Smart devices usually have limitated JVMs (except if you install Linux
Familiar and Kaffe), thus it is difficult to install and run Aglets as it is.
Actually, we are planning on the migration of Tahiti over PDAs, and
maybe a FAQ about the use of Aglets and PDAs will be available soon.
Here you can find a web project related to the Aglets 1.0.3 version:
http://siul02.si.ehu.es/ jirgbdat/FACILITIES/PDAs/principal;ngles.html.

e How many agents can run over the same instance of Tahiti?

It depends on how powerful is you run-time. Aglets exploits a good thread-
ing system, without mapping every agent in a separated thread, but using
instead a single thread for multiple agents. This means that the number of
agents you can create is not directly dependent on the number of thread your
JRE can support. Furthermore, due to the message architecture of Aglets,
where a thread is assigned to each message to be processed, the number of
supported agents (and their performance) depends on the use of messages
that currently running agents are doing.

e I have agents developed with the 1.x version of Aglets, can I run
them with the 2.x version?
So far, there is no knowledge of incompatibility among agents developed with
different major versions, even if it is possible that old agents do not run. The
first thing to try is to recompile the old agent (if possible) with the new API.
If you know or find some incompatibility, please send a message or write a
bug report.

The main difference between the 1.x and the 2.x series, is the use of the
Java 2 security mechanism: the old 1.x version did not use it, while the 2.x
version do, leading to a more Java 2 compliant application.

e It seems as the ant file is corrupted, what can I do? (only for *nix
operating systems)
Check if the build.xml contains any DOS carriage return characters, and
clean the file with the dos2unix command. If it is still not working, try
downloading a newer version of Apache Ant from http://www.apache.org.

e I try to start my tahiti server using command agletsd -f myAglets.props,
but I got error messages Out of environment space. What do I have
to do? (only for MS Windows operating systems)
You have at least two possible ways of extending the memory space: (i)
change the size of the argument of the /E: parameter for command.com in
the config.sys shell setting.For instance, set of the size of environment
variables to 512 bytes, specify:

55

SHELL=C:\COMMAND.COM C:\ /P /E:512
// Maximum is 4K:
SHELL=C:\COMMAND.COM /E:4096 /P

You can add this to your config.sys file. If this does not work, try changing
the environment variables of the MS-DOS prompt accessing the memory
section of the Property of the prompt icon.

I got an AccessControlException, what do I have to do?

This exception is thrown when your code is trying to execute an operation
for which it has not enough rights (for example, it is trying to open a server-
socket). Have a look to your policy file, and in the case try using the sample
shipped with Aglets, that can be installed running the install-home option
of Ant.

Is there a way to directly log-in to Aglets without inserting a user-
name and a password?

Yes. You have to specify the username and the password to use in a proper-
ties file, and then you have to launch Tahiti specifying the properties file to
use. First of all, place the username and the password in the file:

aglets.owner.name=aglet_key
aglets.owner.password=aglets

where aglet key and algets are the username and the password existing in
the keystore; substitute them with the couple you want to use. The launch
Tahiti specify the option -f /path/to/the/properties/file, thus it will
not prompt you for the username and the password. Please note that this
option is enabled with the default properties file, cnf/aglets.props, but
you have to explicity pass the file to the Tahiti command line.

Please take into account that storing a password in a plain text file is not
a good security desing, thus be carefull with permission of such file (i.e.,
nobody except you should have read/write access to the file).

Why the keystore contains [an aglets_key and anonymous| key pair?
Aglets requires that each agents has an owner. When you log in to Tahiti,
you are implicitly saying that all agents created thru the Tahiti user interface
will have “you” as owner. Each aglet will have, as attachment, the keystore
data to recognize its owner, and this is the reason why you must to log in to
Tahiti, before you can create any agent.

Now think at what happens when your platform is receiving an agent from
an external source, that could be another agent platform. In this case,
you do not have in your keystore credentials about the owner, since these
credentials have been stored in the source platform. To solve this problem,

56

the anonymous keypair is used, and this is the reason why the keystore comes
with pre-set keys.

Please note that, even if it is possible to assign permissions on the base of
the owner rather than the simple code base, this feature does not seem to
work very well.

Can I disable security checks in Tahiti?

First of all ask yoruself if you really need to run Tahiti withour security
settings; this is strongly unrecommended for production machines. Never-
theless, if you are sure you want to do this, edit the aglets.props file and
set the property aglets.secure to false.

Can I change the logging system?

Aglets is currently using Log4J; the logger class is determined by the value of
the property aglets.logger.class, thus you can change the logger simply
changing the above property in the aglets.prop file. The Jakata Log4J
class is org.aglets.log.log4j. Log4jInitializer, but you can change it to another,
such as org.aglets.log.console. Consolelnitializer, that prints everything to the
STDOUT (you should redirection or piping to smartly analyze outputs), or
org.aglets.log.quiet. QuietInitializer that suppresses the most of the logging
output.

Is there any debugging capability?

Actually no. I suggest you to use smart printing functions, to understand
what is happening to the code. You can try also using the Java DeBugger
(jdb), but it could be quite difficult.

Do I need any special library to compile the source version of
Aglets?

In general no, but you could need a few libraries like log4j in your classpath.
If you have any error, please report it to the mailing lists.

How can an aglet transport a file from one host to another?

This is an often asked question over all the aglets mailing lists, therefore
please read this point before asking it by yourself. An aglet cannot trans-
port anything that is not a Java serializable object, that means you have to
transform your file into a Java serializable object. The kind of the object de-
pends on yourself. For exmaple, if you have to transport a text file, you can
read all the file and place its content into a string (i.e., java.lang.String).
If the file is a binary one, you have to translate it into a portable object,
even a MIME one. Please do not try to migrate a File object, since it will
not work! The most efficient way to transform a file into an object depends
on what your application must do, and I suggest you to have a look even
at the SOAP or any other XML based document form. Finally, please take
care that if the file is available by a network filesystem (such as AFP, SMB,

57

NFS), you do not need to migrate the file at all, but simply to adjust the
file name on the destination.

Can I use HTTP messaging among aglets?

Please note that you can implement any kind of network messaging in Aglets,

from standard sockets, to HTTP, SOAP, RMI, etc. But it is on your own

to implement such way of communications; you can have a look at the code

available at the aglets-net project(see http://sourceforge.net/projects/agletsnet.

Is there a way to exchange data among agents?

Yes, you have to send messages containing the data you want to exchange,
but please take care of the serializability of your objects, since the messaging
system allows only serializable messages.

Is it possible to run multiple context over the same server? How
can I do that?

The general answer to this question is yes, even if Tahiti currently does
not allow users to create multiple context. Please note that this does not
mean that it cannot handle multiple contexts, and in fact you can develop
an agent in charge of creating multiple contexts for you. To do this, use the
createContext(..) method of the AgletsRuntime class. When working
with multiple context, take care of the URL for dispatching agents to a
specific context: place the context name after the machine address, such as
atp://machineAddress/contextName.

How can I move an agent among different contexts?
You can use the ATP migration protocol, specifying the same address but
changing the URL in order to reflect the destination context.

Can an Aglet communicate with a Servlet?
Yes, take a look at the code below (written by Angsuman Dutta):

public void run(){
try{

URL server=new URL("http://localhost:8100/servlet/FirstServlet");
URLConnection con = server.openConnection();

con.setDoOutput (true);

con.setUseCaches(false);

Calendar rightNow = Calendar.getInstance();

ObjectOutputStream request = new ObjectOutputStream(new BufferedOutputStrean
StringBuffer d=new StringBuffer("<?xNameVdaml version=\"1.0\" encoding=\"UTE

d.append ("<Name>") ;
d.append("dude");

58

d.append ("</Name>") ;

String data=d.toString();

String msgtype="xmlFile";

String [] msg=new String[2];

msg [0]=msgtype;

msgl[1]=data;
request.writeObject (msg) ;
request.flush();

request.close();

ObjectInputStream response = null;
Object result = null;

response = new ObjectInputStream(
new BufferedInputStream(con.getInputStream()));

// read response back from the server
result = response.readObject();
}
catch(Exception e){
System.out.println(e);
}
}

e Can I develop an agent server on my own? How can I embed the
Aglets technology into my application?
You can develop an agent server by your own, and this will allow you also
to embed the Aglets technology in your applications. Before posting any
question about how to write an agent server, you should carefully have a look
at the ServerApp.java source code available with the source code package.

When developing your own server, you should take into account a few issues.
There can be authentication problems, that means you could be unable to
log in to the server as you are used to do with Tahiti. To overtake this
problem, someone has suggested to hardcode the couple username/password
in the server source file. Moreover, you can catch some exception due to the
unavalability of fonts; if this happens remove the following lines from the
Tahiti.initializeGUI() method:

try {

Class.forName ("sun.awt.PlatformFont"); // for 1.1
} catch (Exception ex) {

ex.printStackTrace();

¥

When developing your own server, you have to take care about properties
and permissions, thus the new server can access all properties and can act

59

as a real Tahiti substitute. Furthermore, remember that each agent must
belong to one context, that means you have to create a context first, then
you can create agents or other contexts. The following piece of code has
been written as an example by Gustavo Nucci Franco:

import com.ibm.atp.daemon.*;
import com.ibm.aglet.system.*;
import com.ibm.aglet.*;

import java.net.*;

public class xAgletContext{
public AgletContext context;
public int portNumber;

public xAgletContext(int pn){
portNumber = pn;
String [] arg = {"-port", String.valueOf (portNumber)l};
Daemon daemon = Daemon.init(arg);
AgletRuntime runtime = AgletRuntime.init(arg);
context = runtime.createAgletContext("");
daemon.start("aglets");
context.start();
context.addContextListener(new CL());

class CL extends ContextAdapter{
//You should implement listeners’ events to monitor
//the life cicle of your aglets here

}
}

If you get a java.lang.ExceptionInInitializerError: java.lang.NullPointerException
related to the LogInitializer.getCategory(Unknown Source), it means

that the logging system cannot be loaded and initialized statocally. Try

this:

String initializerName = System.getProperty("aglets.logger.class",
"org.aglets.log.quiet.QuietInitializer");
Class.forName(initializerName) ;

that will load the logger, making the exception to desappear.

Another example of a server can be the following:

// usage: java SimpleServer <keystore> <policy> <username> <password> <port>

60

import java.net.x*;

import java.util.x;

import com.ibm.aglet.*;

import com.ibm.aglets.*;

import com.ibm.aglets.tahiti.x*;
import com.ibm.maf.*;

public class SimpleServer{
com.ibm.aglet.system.AgletRuntime runtime;
private String username;
private String password;
private String port;
private String keystore;
private String policy;
AgletContext context;
MAFAgentSystem maf_system;

public SimpleServer(String args[]){
try{
// get all parameters
keystore = args[0];
policy = args[1];
username =args[2];
password = args[3];
port = args[4];
}

catch (Exception ex){
ex.printStackTrace();
}
}

public void setup(){
Properties props = System.getProperties();
// Setup properties
props.put("atp.resolve", "true");
props.put("atp.useip", "true");
props.put ("maf.port", port);
props.put ("maf.protocol", "atp");
props.put("java.policy", policy);
props.put("aglets.keystore.file", keystore);
props.put ("maf.finder.port", "4435");
props.put ("maf.finder.host", "localhost");
props.put ("maf.finder.name", "MAFFinder");
props.put("aglets.logger.class",
"org.aglets.log.console.ConsoleInitializer");
props.put("aglets.logfile", "aglets.log");
String initializerName = System.getProperty("aglets.logger.class",
"org.aglets.log.console.ConsoleInitializer");

61

try{
Class.forName(initializerName) ;

}

catch (ClassNotFoundException ex){
ex.printStackTrace();

}
}

public void start(){
this.setup();
runtime = runtime.init(null);
runtime.authenticateOwner (username, password);
maf_system = new MAFAgentSystem_AgletsImpl (runtime);

String protocol = "atp";

try{
MAFAgentSystem.initMAFAgentSystem(maf_system, protocol);
// use Tahiti classes to initialize
Tahiti.installFactories();
Tahiti.installSecurity();
// create context
context = runtime.createAgletContext("");
MAFAgentSystem.startMAFAgentSystem(maf_system, protocol);
//start context
context.start();

}
catch (MAFExtendedException ex)<{
ex.printStackTrace();

X
}

public static void main(String[] args){
SimpleServer simple = new SimpleServer(args);
simple.start();
}
}

e Can I use IP addresses instead of DNS names for URLs?
Yes, and in some situations it is suggested you do that. For example, if
you are working with machines not registered in a DNS; you should use IP
addresses instead of host names.

e I can send an agent to another machine but I cannot retract it
back. Dispatching the agent other the same machine raises a
RequestRefusedException. How can I solve this?

It is probably a problem of DNS. Try using IP addresses in the URLs or to
add the machine name and address to each hosts file.

62

e I need to fix the security policies of my server, but I don’t know
how to know the codebase agents are running from.
You can learn the codebase developing a simple agent that executes:

try {
URL codeBase =
((Aglet)this.getProxy() .getAgletInfo() .getCodeBase();
System.out.println("codeBase: " + codeBase) ;

} catch (InvalidAgletException e) {
System.out.println("InvalidAgletException");

}

Please be aware that, if your hostname changes (e.g., change of the network,
ISP, etc.), your permissions must be set up again, because your codebase
changes accordingly to the hostname. Furthermore, consider that codebase
are not interpreted but they are treated literally. This means that if your
hostname is myHost, using myHost or myHost.myDomain is not the same,
even if the former is the full qualification of the former.

e I checked permissions, but I still got exception related to them.
Try placing permissions also in the security files into the $HOME/.aglets
directory.

e When I execute agents I got No integrity Check because no security
domain is authenticated.
This is a warning message, and you can ignore it. It simply reports that you
havven’t set up a security domain.

e Sometimes, running particular agents or dispatching them, I got
exception related to the class loading (e.g., ClassNotFoundException,
ClassFormatException, etc.). How can I fix it?

Try adding your library jar to the classpath, even in the Tahiti property. If
this does not work, try adding the unjared classes to the public root.

e Can I avoid a few references to be serialized?
If your agent declares a few references as transient, then they will never be
serialized during the aglet travel. This does not mean that they will be
removed by the agent, but simply that they will be “reset” to a null value
on the destination, that means you have to check (and in case, recreate)
references in the onCreation(..) method (or in your mobility listener).

e Can an Aglets wait for a specific message before continuining its
execution?
Yes, but it is not very simple. You can deactivate the aglet, waiting for an
incoming message and then restarting its execution.

63

When I try to launch my agent I got a ClassNotFoundException.

It means that the Aglets runtime cannot find your agent class. First of all,
be sure that your classes and packages are stored in the oublic root, that is
usually $AGLETS_HOME/public; if it is still not working, try manually setting
your classpath to include your classes, and then restart the server. If it is
still not working, try making a jar of your classes and palce it in the 1ib
directory of your Aglets installation.

If T print information about an aglet proxy, I get something like
Aglet [invalid], and the proxy is not working. How can I fix it?
You should use the proxy’s id, instead of storing the proxy in a complex
data (such as an hash map, a vector or an array), since using data structures
to store proxies can invalidate them, since the agent situation can change.
The agent and proxy id is unique, thus you can always get the proxy back
starting from the id.

Can I use static initializers in my agents?

You should avoid static initializers, since if your agent migrates, the initial-
izers will not be re-executed. In particular, this can cause problems with
transient variables, thus you should absolutely place your initializers in the
onCreation(..) method.

Is it possible to avoid that deactivated agents are automatically
reactivated when Tahiti restarts?
Yes, edit the properties file and set the cleanstart parameter to true.

5.2 Configuration Files

This chapter contains examples of configuration files, that can help you to
check the set-up of your Aglets platform.

The aglets.props file

The following is the default aglets.props configuration file shipped with
the Aglets platform

(mandatory) A path under where aglets is installed. Set on command
line by agletsd but can be overridden here.
#aglets.home=d:\\aglets\\agletsi_2

(optional) A path to the directory under where ".aglets"

directory resides. This is also where your KEYSTORE must be.
default: $HOME (unix) or %HOME)% (win32)

#user.home=

(optional) Location of aglets.policy file,
default: (user.home)/.aglets/security/aglets.policy

64

#java.policy=

(optional) Which protocol to use(atp or rmi)
default: atp
#maf .protocol=atp

(optional) Port number used by agents server.
default: 4434
#maf .port=4434

(optional) Host name of Finder used to register/lookup
the locations of agents.

default: Not used

#maf .finder.host=artemis.trl.ibm.com

(optional) Port number of Finder used to register/lookup
the locations of agents.

default: 4435

#maf .finder.port=4435

(optional) Registry name of the Finder.
default: MAFFinder
#maf .finder.name=MAFFinder

(optional) verbose output
default: false
#verbose=true

(optional) Default search path for class files.
Windows: ’;’ separated path list

Unix: ’:? separated path list

default: (aglets.home)/public
#aglets.class.path=

(optional) Directory which are exported to other aglets servers.
default: (aglets.home)/public
#aglets.public.root=C:\\Aglets\\public

(optional) Aliases used for codebase of aglets.
#aglets.public.aliases=\

“tai=/home/tai,\

“mima=/home/mima

(optional) If false, every activities of aglets in the server
will be allowed.

default: true

aglets.secure=true

(optional) Class name of an AgletContextListner (Viewer)
To run server with no UI, set null.

i.e. "aglets.viewer="

default: com.ibm.aglets.tahiti.Tahiti

(ALT: com.ibm.aglets.tahiti.CommandLine)
#aglets.viewer=com.ibm.aglets.tahiti.Tahiti

65

(optional)
aglets.logfile=aglets.log

(optional)
default: false
#aglets.cleanstart=false

(optional) Comma(,) separated list of URLs(or class names) of aglets
which should be created just after the server starts.
#aglets.startup=

examples.hello.HelloAglet,\

atp://yourhost:434/examples.hello.HelloAglet

(optional) Resolve the domain name of the host by querying DNS server.
default: false
#atp.resolve=false

(optional) TCP/IP domain name of the host
#atp.domain=calivera.com

(optional) Set server’s hostname to "localhost". This is useful if
the host does not have any network adapter.

default: false

#atp.offline=true

(optional) Authenticate other servers when the server try to communicate
each other. Servers form security domains.

default: false

#atp.authentication=false

(optional) Use secure random seed generation which is provided by JDK.
If this is set to false, aglet server uses a proprietary one,

which is unsecure but fast.

default: true

#atp.secureseed=true

(optional) User servers ip address in server URL instead of
logical name. This is useful if you don’t have a DNS entry.
default: false
#atp.userip=true

User ID for authorization. This key must exist in your keystore.

See keytool documentation for info on creating entry. (genkey)
aglets.owner.name=aglet_key

Password for above user ID. Must be same as entered as the key password
used with keytool.

aglets.owner.password=aglets

Keystore password. Same as used with keytool.
aglets.keystore.password=aglets

Logger class for ASDK.

66

For log4j - org.aglets.log.logdj.Log4jInitializer

For output to standard out - org.aglets.log.console.ConsoleInitializer
For quiet - org.aglets.log.quiet.QuietInitializer

Default: org.aglets.log.quiet.QuietInitializer
aglets.logger.class=org.aglets.log.log4j.Log4jInitializer
#aglets.logger.class=org.aglets.log.quiet.QuietInitializer
#aglets.logger.class=org.aglets.log.console.ConsoleInitializer

The agletslog.xml file

The following is the default agletslog.xml configuration file shipped with
the Aglets platform

<?xml version="1.0" encoding="UTF-8" 7>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<log4j:configuration>

<!-- Layout does not use location info and is faster. -->

<appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d{ABSOLUTE} -5p [%t] %c{2} - ¥m¥n"/>
</layout>

</appender>

<appender name="FULLINF0" class="org.apache.log4j.ConsoleAppender">

<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="%d{ABSOLUTE} -5p [%4t] %C{2}:%c{1} (%F:%L)
</layout>

</appender>

<category name="org" additivity="false">
<priority value="debug" />

<appender-ref ref="CONSOLE" />
</category>

<category name="com" additivity="false">
<priority value="debug" />

<appender-ref ref="CONSOLE" />
</category>

<!-- Must be last element!! -->
<root>

<priority value ="debug" />
<appender-ref ref="CONSOLE" />
</root>

</log4j:configuration>

67

- Ymfn"/>

Chapter 6

The IBM Public License -
version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS
OF THIS IBM PUBLIC LICENSE ("AGREEMENT"). ANY USE, RE-
PRODUCTION OR DISTRIBUTION OF THE PROGRAM CONSTITUTES
RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

DEFINITIONS

"Contribution" means:

1. in the case of International Business Machines Corporation ("IBM"),
the Original Program, and 2. in the case of each Contributor, 1. changes to
the Program, and 2. additions to the Program; where such changes and/or
additions to the Program originate from and are distributed by that partic-
ular Contributor. A Contribution ’originates’ from a Contributor if it was
added to the Program by such Contributor itself or anyone acting on such
Contributor’s behalf. Contributions do not include additions to the Program
which: (i) are separate modules of software distributed in conjunction with
the Program under their own license agreement, and (ii) are not derivative
works of the Program.

"Contributor" means IBM and any other entity that distributes the Pro-
gram.

"Licensed Patents " mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution alone
or when combined with the Program.

"Original Program" means the original version of the software accompa-
nying this Agreement as released by IBM, including source code, object code
and documentation, if any.

"Program" means the Original Program and Contributions.

"

68

"Recipient" means anyone who receives the Program under this Agree-
ment, including all Contributors.

GRANT OF RIGHTS

1. Subject to the terms of this Agreement, each Contributor hereby grants
Recipient a non-exclusive, worldwide, royalty-free copyright license to re-
produce, prepare derivative works of, publicly display, publicly perform, dis-
tribute and sublicense the Contribution of such Contributor, if any, and such
derivative works, in source code and object code form. 2. Subject to the
terms of this Agreement, each Contributor hereby grants Recipient a non-
exclusive, worldwide, royalty-free patent license under Licensed Patents to
make, use, sell, offer to sell, import and otherwise transfer the Contribution
of such Contributor, if any, in source code and object code form. This patent
license shall apply to the combination of the Contribution and the Program
if, at the time the Contribution is added by the Contributor, such addition
of the Contribution causes such combination to be covered by the Licensed
Patents. The patent license shall not apply to any other combinations which
include the Contribution. No hardware per se is licensed hereunder. 3. Re-
cipient understands that although each Contributor grants the licenses to
its Contributions set forth herein, no assurances are provided by any Con-
tributor that the Program does not infringe the patent or other intellectual
property rights of any other entity. Each Contributor disclaims any liability
to Recipient for claims brought by any other entity based on infringement
of intellectual property rights or otherwise. As a condition to exercising the
rights and licenses granted hereunder, each Recipient hereby assumes sole
responsibility to secure any other intellectual property rights needed, if any.
For example, if a third party patent license is required to allow Recipient to
distribute the Program, it is Recipient’s responsibility to acquire that license
before distributing the Program. 4. Each Contributor represents that to its
knowledge it has sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

REQUIREMENTS

A Contributor may choose to distribute the Program in object code form
under its own license agreement, provided that:

1. it complies with the terms and conditions of this Agreement; and 2.
its license agreement: 1. effectively disclaims on behalf of all Contributors
all warranties and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or condi-
tions of merchantability and fitness for a particular purpose; 2. effectively
excludes on behalf of all Contributors all liability for damages, including

69

direct, indirect, special, incidental and consequential damages, such as lost
profits; 3. states that any provisions which differ from this Agreement are
offered by that Contributor alone and not by any other party; and 4. states
that source code for the Program is available from such Contributor, and
informs licensees how to obtain it in a reasonable manner on or through a
medium customarily used for software exchange.

When the Program is made available in source code form:

1. it must be made available under this Agreement; and 2. a copy of this
Agreement must be included with each copy of the Program.

Each Contributor must include the following in a conspicuous location
in the Program:

Copyright (C) 1996, 1999 International Business Machines Corporation
and others. All Rights Reserved.

In addition, each Contributor must identify itself as the originator of its
Contribution, if any, in a manner that reasonably allows subsequent Recipi-
ents to identify the originator of the Contribution.

COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with
respect to end users, business partners and the like. While this license is
intended to facilitate the commercial use of the Program, the Contributor
who includes the Program in a commercial product offering should do so in
a manner which does not create potential liability for other Contributors.
Therefore, if a Contributor includes the Program in a commercial product
offering, such Contributor ("Commercial Contributor") hereby agrees to de-
fend and indemnify every other Contributor ("Indemnified Contributor")
against any losses, damages and costs (collectively "Losses") arising from
claims, lawsuits and other legal actions brought by a third party against
the Indemnified Contributor to the extent caused by the acts or omissions
of such Commercial Contributor in connection with its distribution of the
Program in a commercial product offering. The obligations in this section do
not apply to any claims or Losses relating to any actual or alleged intellec-
tual property infringement. In order to qualify, an Indemnified Contributor
must: a) promptly notify the Commercial Contributor in writing of such
claim, and b) allow the Commercial Contributor to control, and cooperate
with the Commercial Contributor in, the defense and any related settlement
negotiations. The Indemnified Contributor may participate in any such claim
at its own expense.

For example, a Contributor might include the Program in a commercial
product offering, Product X. That Contributor is then a Commercial Con-
tributor. If that Commercial Contributor then makes performance claims,
or offers warranties related to Product X, those performance claims and war-

70

ranties are such Commercial Contributor’s respounsibility alone. Under this
section, the Commercial Contributor would have to defend claims against
the other Contributors related to those performance claims and warranties,
and if a court requires any other Contributor to pay any damages as a result,
the Commercial Contributor must pay those damages.

NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE
PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WAR-
RANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IM-
PLIED INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR
CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
solely responsible for determining the appropriateness of using and distribut-
ing the Program and assumes all risks associated with its exercise of rights
under this Agreement, including but not limited to the risks and costs of
program errors, compliance with applicable laws, damage to or loss of data,
programs or equipment, and unavailability or interruption of operations.

DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEI-
THER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY
LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITH-
OUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OR DISTRIBUTION OF
THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

GENERAL

If any provision of this Agreement is invalid or unenforceable under appli-
cable law, it shall not affect the validity or enforceability of the remainder
of the terms of this Agreement, and without further action by the parties
hereto, such provision shall be reformed to the minimum extent necessary to
make such provision valid and enforceable.

If Recipient institutes patent litigation against a Contributor with respect
to a patent applicable to software (including a cross-claim or counterclaim in

71

a lawsuit), then any patent licenses granted by that Contributor to such Re-
cipient under this Agreement shall terminate as of the date such litigation is
filed. In addition, if Recipient institutes patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that the Pro-
gram itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s rights
granted under Section 2(b) shall terminate as of the date such litigation is
filed.

All Recipient’s rights under this Agreement shall terminate if it fails to
comply with any of the material terms or conditions of this Agreement and
does not cure such failure in a reasonable period of time after becoming
aware of such noncompliance. If all Recipient’s rights under this Agreement
terminate, Recipient agrees to cease use and distribution of the Program as
soon as reasonably practicable. However, Recipient’s obligations under this
Agreement and any licenses granted by Recipient relating to the Program
shall continue and survive.

IBM may publish new versions (including revisions) of this Agreement
from time to time. Each new version of the Agreement will be given a dis-
tinguishing version number. The Program (including Contributions) may
always be distributed subject to the version of the Agreement under which
it was received. In addition, after a new version of the Agreement is pub-
lished, Contributor may elect to distribute the Program (including its Con-
tributions) under the new version. No one other than IBM has the right to
modify this Agreement. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of
any Contributor under this Agreement, whether expressly, by implication,
estoppel or otherwise. All rights in the Program not expressly granted under
this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and
the intellectual property laws of the United States of America. No party to
this Agreement will bring a legal action under this Agreement more than one
year after the cause of action arose. Each party waives its rights to a jury
trial in any resulting litigation.

72

