
Personal Security Agent: KQML-Based PKI

Qi He, Katia P. Sycara

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA. 15213

qihe@cs.cmu.edu, katia@cs.cmu.edu

Timothy W. Finin

Dept of Computer Science and Electrical Engineering

University of Maryland, Baltimore County

Baltimore, MD 21250

�nin@cs.umbc.edu

October 1, 1997

Abstract

Certi�cate management infrastructure, a.k.a. PKI (Public Key Infrastructure),
which issues and provides access to public key certi�cates to preserve the integrity
of a public key, is fundamental for electronic commerce and business across the In-
ternet. To satisfy the requirements of various applications, PKI should demonstrate
customization to user needs, interoperability and exibility in its implementations so
it can satisfy the needs of various applications. Particularly, due to the popularity of
software agent-based applications over the Internet, security will be urgently needed by
the "agent society". We propose to implement the authority of authentication veri�ca-
tion service systems as personal autonomous software agents, called security agents. In
this paper, we present two aspects of KQML-based PKI: 1. the security agent concept
and its functional modules; 2. an extension of KQML, which is needed for public key
management and secure communications among security agents and application agents.

Area: Software Agents

Keywords: security, agent architecture, PKI (Public Key Infrastructure), KQML, authen-
tication, interoperability.

1



1 Introduction

The public key cryptosystem is playing an increasingly important role in electronic transac-
tions on computer networks. However, whenever we use a public key to encrypt a message
or to verify the authenticity (digital signature) of a message, we must ensure that the public
key we are using is valid and it belongs to the claimant rather than anyone else. This issue
known as the public key integrity problem vitally determines the whole security of commu-
nication, including conducting transactions over the Internet. The current state-of-the art
solution is to establish in a hierarchical manner a system to issue public key certi�cates, in
which the principal's public key (as well as some other information) is included and signed
by an authority, and the authority may hold a certi�cate issued by a super authority, and
so on up the hierarchy. This system is the so called public key certi�cate management
infrastructure, or PKI (Public Key Infrastructure)[1].

However, several PKI implementations are currently evolving (such as IETF's PKIx(Public-
Key Infrastructure,X.509)[3], PKCS(Public Key Crypto System)[4], PGP(Pretty Good
Privacy)[5], SPKI(Simple Public Key Infrastructure) [6], SDSI(Simple Distributed Secu-
rity Infrastructure)[7], etc.), and there is no single PKI implementation nor even a single
agreed-upon standard for setting up a PKI. Even those implementations that are based on
the same standard X.509 recommendation[8] are still incompatible with each other because
of independent interpretations in their actual implementations[9][10]. So, overcoming this
incompatibility and enabling wide spread authentication veri�cation o�ered by the PKI is
a crucial issue. It is also one of the motivations of our work.

To resolve the PKI interoperability problem, the simplest solution is to establish a uni-
form system with only one format of certi�cate, name space and management protocol.
However, not only is this extreme di�cult to enforce in practice, but also it is undesir-
able in many situations. For example, di�erent circumstances warrant holding di�erent
certi�cates to satisfy a variety of authenticity veri�cation requirements. For example, in
a given situation, the information of organizational relationships is needed as an element
in a certi�cate, but in other situations, this information is not needed and it shouldn't be
included in the certi�cate for the sake of security and privacy | this is a basic principle of
security: "It should not be possible to do more or learn more than what is speci�ed in the
protocol[11]1. With the increasing use of agents for di�erent applications, increasing agent
decentralization and need for agent communication and interoperation, such exibility is
essential. This has been recognized in recent security literature[7]. This exibility in PKI
implementation requires that multiple types of certi�cates, de�nition of name space, and
management protocols tailored for various applications must be developed. In this context,
our research e�ort at developing a way to exibly implement decentralized PKI is also a

1In fact, only the public key and a signature are the essential parameters that must always be present in
a certi�cate.

2



basic and critical step for decentralization of trust management [12].

Another direct motivation of our research is that the development of the Internet is changing
the traditional paradigm of software, which is monolithic and passively operated by humans,
to the new agent-based technology which works cooperatively and autonomously. The new
generation of software, agents, will be delegated by humans to automatically perform tasks,
including digitally conducting transactions across the Internet. Security issues are identi-
�ed as critical for the success of agent-based Internet programming[14]. Agent-oriented
authentication veri�cation services must be supplied for most agent-based applications. In
fact, agents as primarily human-delegated software, will be an ideal application domain of
modern cryptography in the very near future.

Treatment of security in the agent literature has been very scant. [17, 14] discuss some
issues from the point of view of cryptography. In particular, [17] discussed some useful
principles, which, although well-known in the security community, could be useful to agent
developers. For example, an agent developer could understand that any design which de-
pends on secrecy of the design is guaranteed to fail and that the public cryptographic
algorithms are the right approach for agent security. In [14] language for agents to support
the secret communication was discussed based on cryptography techniques. However, like
the applications of public key cryptosystem in human society, without a scalable authenti-
cation service, all of security schemes and protocols designed for open agent society cannot
make any sense.

Further more, security protocols, operations and interoperation between principals (agents),
as well as public key management are really di�cult burden for the ordinary end-users to
handle. Those routines themselves should be autonomously and cooperatively performed
by programs running on the Internet so that the workload of the users can be relieved.

We propose to implement the authorities of authentication veri�cation service systems as
autonomous software agents, called security agents. This open implementation of agent-
based PKI facilitates interoperable, exible, and agent-oriented authentication veri�cation
service for various applications.

In this paper, we discuss two aspects of our exible PKI development: (1) The security
agent concept and its functional modules | we describe the fundamental idea of imple-
menting PKI by means of a security agent. (2) An extension of KQML | we propose a
new ontology, several new parameters and new performatives that are necessary for public
key management and secure communication among security agents and application agents.
Such performatives and parameters are not currently available in the KQML speci�cation
document[2] or in KQML implementations.

3



2 Security Agent

Existing PKI implementations began with specifying their certi�cate formats and the name
spaces through a pre-de�ned hierarchies, such as the DNS name hierarchy. This method
entails inexible implementation. In our KQML-based PKI, instead of specifying the format
of certi�cates, name space or hierarchy structure, we are applying agent concepts and
technology to authorities of authentication service, and developing a security agent. this
provides a exible framework where di�erent applications can specify their own certi�cate
formats.

From the viewpoint of a user, the security agent can be thought as a kind of con�gurable
facilitator that can be employed by any group of users, organization, community, etc. to
construct their own authentication veri�cation service system. What we mean by "con-
�gurable facilitator" is that we do not pre-specify any particular certi�cation format and
hierarchical relationship in the software (like in other traditional PKI projects), but al-
low the users to de�ne the format(s) of the certi�cation(s) and the name space(s) as they
need (customizing). The hierarchical relationship is dynamically formed as the agents ap-
ply/issue their certi�cates according to the desires of the applications2.

From the viewpoint of PKI structure, a security agent can be thought of as a node in a
dynamically formed hierarchy. More than one authentication veri�cation systems may cross
a node, since a single security agent can hold multiple certi�cates with di�erent certi�cate
name (such as "PGP certi�cate", "RSA PKCS certi�cate", "X community certi�cate",
etc.), formats and name spaces-hierarchical relationships. (refer to Figure 2.1).

Security agents, like other application agents, communicate with each other with KQML.
However, the current version of KQML does not support many security operations needed
in public key management, although some changes were made for agent security in [14].
We propose a security extension of KQML in this paper and will discuss it in next section,
section 3. Succinctly speaking, our extension enable agents to identify multiple certi�cates
and cooperatively conduct security interoperations.

2.1 Function Modules and Architecture

In order for a security agent to manage public key certi�cations, it must be capable of
performing a basic set of tasks. Although there are some di�erence depending on speci�c
hierarchies, the tasks and principles are basically the same: issue/apply a certi�cate, up-
date/revoke a certi�cate. We note that a security agent could potentially provide additional
capabilities, such as retrieve, transfer, or exchange credentials among di�erent hierarchy sys-
tems, or introduce one agent to another, or delegate one agent to act on another's behalf,
etc. Here, however, as an initial step, only the very basic tasks are discussed, so that we

2Certi�cate formats in existing PKI implementations can be adopted if they are suitable for an applica-
tion.

4



Figure 2.1 Multiple Hierarchies across a agent.

Hierarchy 1
Hierarchy 2

Hierarchy 3 application agent

can more clearly sketch the contours of a security agent's structure and functionality.

Every task the security agent performs involves communication with other agents. There-
fore, a security agent needs security protocols for agent communication as well as an internal
databases to store local secret information. Although when a task is carried out, several
functions may be performed asynchronously, we still functionally split the system into sev-
eral components, named modules, with clear boundaries so that we can easily explain how
a security agent works.

The security agent architecture is based on the agent architecture we have developed in
the RETSINA multiagent infrastructure[13]3. Every RETSINA agent has the following
modules: communicator, planner, scheduler, and execution monitor.

We give a brief overview of the general processing of a message by a RETSINA agent. The
modules of a RETSINA agent are implemented as Java threads and operate asynchronously.
However, for simplicity of presentation we present their steps sequentially.

Suppose, a message from another agent comes to the communications module. After the
message is received, it is parsed by the parser. In the simplest situation, the message is a
kind of datum that represents a request from another agent. It is processed by the parser,
which outputs it as a task object and passes it as an objective to the agent's planner.
After the planner has planned for this objective, the plan actions are passed to the task

3The RETSINA project URL is http://www.cs.cmu.edu/ softagents

5



scheduler module to be scheduled. Subsequently, the scheduled actions are executed by the
execution module. Results are sent back to the agent who originated the message through
the communicator.

Figure 2.2 shows the relationships and data ow among the security agent's functional
modules. The modules in the current implementation of the security agent are as follows:

1. Communicator: it deals with communications with other agents, including security
agents or application agents. More precisely, what the communicator module does
is to accept and parse messages (KQML packages) from outside agents, or to pack
outgoing messages into KQML packages and send them out to intended agents.

Sometimes a message could be a cipher, an encrypted message. In this case, the
parser must recognize that the message is encrypted. It organizes into a task object
and sends it to the planner. In some circumstances, these procedures may necessarily
be repeated several times, back and forth, for example, if the original KQML message
included recursive KQML messages.

Similarly, outgoing messages also arrive at the parser from the agent planner or exe-
cution module. To recursively wrap an outgoing message as a KQML package or to
send out a message in secure way, the outgoing message is processed by the parser.
The message is �nally sent out through the communicator.

2. Task Planner: The message from outside, represented as a task object is passed to
the task planner. Upon receiving a task object, the planner initializes a process with
the received data as the input according to a speci�c protocol extracted from PDB
(Protocol Database, see below). The protocol steps are passed to the scheduler.

3. Task Scheduler: this module schedules the protocol steps to be executed. Since the
security agent is an agent whose services are used by many other agents, it needs to
prioritize and schedule its requests for security services that it receives from many
di�erent agents. After the protocol steps have been scheduled, they are passed to the
execution module.

4. Execution Module: This module executes the process initiated by the task scheduler
step by step. The basic security operations executed by the execution module are:
encrypt, decrypt, sign and verify a message.

5. Human-Agent Interface: Human/agent interface is designed as an interface for user
to set up system and customize the system. More precisely, through the interface
users can:

(a) design and generate public key certi�cates according to their applications. Through
the interface, the users can de�ne or choose a format of certi�cate they want,
name space length of their public key and algorithms of cryptography, as well as
a name of certi�cate.

6



(b) apply/issue some kind of public key certi�cates - The procedure of applying or
issuing a public key certi�cate is very important so that it must be done by
a manual process since some judgement is required to evaluate the proposed
evidence for the applicant agent owner (the user or organization which delegates
the applicant agent to act on his/ her/its behalf).

During the application procedure, the applicant needs the interface to talk with
their agents about which security agent to apply for their certi�cates, which
kind of certi�cate he wants. When applicants receive their certi�cates, they
also need to con�rm that the information included in the certi�cate is correct
and the signature is signed correctly by the intended security agent. During
the procedure of issuing a certi�cate, the person who controls a security agent
that issues the certi�cate also need the interface to verify the authenticity of
the information of an application, then decide whether to validate a public key
certi�cate for applicant agent.

(c) Input the sets of security protocols for various certi�cate management strategies
and policies of authentication service system.

6. PDB (Protocol Database): Every security agent should store all sets of needed security
protocols in its PDB for various managements tasks (routines) required in all of the
authentication service systems across it. The basic protocols are certi�cate update
protocols, certi�cate revocation protocols, certi�cate application/issuing protocols,
etc. Given a task object by the parser, the planner looks up the PDB, then starts
a process according to the matched protocol from PDB. Subsequently, the execution
module executes the protocol automatically.

7. CDB (Certi�cate Database): There are two cases in which a security agent (even
application agent) needs a CDB:

(a) In a dynamic management of public key certi�cation, when the agent applies
for a certi�cate from a security agent, it will be given not only its certi�cate
(in which the public key that has been automatically generated is included) but
also a chain of certi�cates. This chain of certi�cates consists of the certi�cates of
all the security agents along the path from the root security agent through the
parent security agent, from which it applies its certi�cate, in the authentication
hierarchy. Each security agent stores its chain of certi�cates in its CDB. Then,
when the security agent wants to communicate with another security agent, it
does not necessarily contact other higher level security agents to retrieve the
participant's public key certi�cate(s). The agents can exchange their certi�cate
chains (or part of their chains) to prove their authenticity according to their
position in the name space.

(b) To cut down communication costs, an agent (security agent or application agent)
may cache some most frequently used certi�cates, i.e. certi�cates of agents it

7



Communicator

In Out

Agent/human Interface

CDBPDB

Execution Module

KQML message KQML message

Task
Object

Task
Object

fe
e

d
b

a
ck

Figure 2.2 Structure of Security Agent.

Planer

Scheduler

has frequent dealings with. When the agent needs to use one of the certi�cates,
it doesn't have to communicate with any other security agent or its participant,
but just looks up the CDB, gets the certi�cate for the particular agent and uses
it. In both these cases, the CDB can reduce the overhead of communication mit-
igate the bottleneck in authentication service system, and simplify some secure
communication protocols.

3 Extensions to KQML

KQML (Knowledge Query and Manipulation Language), is a communication language and
protocol which enables autonomous and asynchronous agents to share their knowledge and
work towards cooperative problem solving[2]. However, agent security issues were not taken
into consideration in the original version of KQML speci�cation. Some changes were made
for secure communications based on KQML[14]. But it is still incomplete, especially since
it does not satisfy the requirements of public key certi�cation management. In order to
implement KQML-based PKI, we propose a KQML ontology, several new parameters, and
new performatives as follows. The new ontology is:

8



PKCerti�cate

It enable the agents, including application agents, to know that the performative they
received concerns interactions about public key certi�cate management.

3.1 New parameters

The four new parameters are:

1. :certi�cate
The certi�cate of the agent sending the message will be included as the value of this
parameter in a performative. The format of the certi�cate depends on the certi�cate
name included in the performative as the value of parameter "language". For example,
if the name is SPKI, then the format will be: [5]

ISSUER : a principal or a single top-level name in a principal's name space. The
principal is identi�ed as a public key or the hash of that key; the corresponding
private key signs the certi�cate.

SUBJECT : a principal, an object or a SDSI name reducible to either of those.
The subject is the agent who receives authority from the issuer by way of the
certi�cate.

DELEGATION : the optional modi�er, "(propagate)", giving the subject permis-
sion to delegate the authority presented in the certi�cate (or part of it) to some
other Subject.

AUTHORITY : the speci�c authorization(s) being delegated in this certi�cate.

VALIDITY : date ranges and/or on-line validity tests for determining certi�cate
validity.

SIGNATURE : a digital signature signed by ISSUER.

2. : certi�cateName
The value of this parameter will indicate the name of the certi�cate used in the
performative, so that the agent receiving the KQML message will be able to parse
the information as certi�cate.

3. : signature
The value of this parameter is the sender's signature signed at the end of the content
of the KQML message. This signature can be veri�ed with the public key included
as the value of the parameter certi�cate mentioned above.

4. : certi�cateChain
For the dynamic management of certi�cates, the certi�cateChain, in which the certi�-
cates of the agents along the path from the root security agent through the agent that
is the holder of the certi�cateChain, will be needed as parameter in the performative
as mentioned in 2.1.(7).

9



3.2 New performatives

1. apply-certi�cate
In order to securely communicate with others, when an agent is created, it will apply
for a certi�cate in which a public key automatically generated will be included. To
apply for the certi�cate from an authentication authority, a security agent, the agent
will send the following performative in the KQML message, as its certi�cate applica-
tion.

apply-certificate:

:language fname of certificateg

:content fall the elements of certificate except signature

of the authorityg

:ontology PKCertificate

where the content of "content" is all the elements needed to be included in the cer-
ti�cate which is applied. The content of "language" identi�es the name of certi�cate,
which will enable receiver's KQML parser to know what elements are included as the
"content" of this performative and then extract them out.

2. issue-certi�cate

If an application for a certi�cate is approved (with the interference of humans, see
also 2.1 (5)), the security agent in charge of issuing certi�cates will send back a
performative as follow:

issue-certificate:

:certificateName fname of certificateg

:content fissued certificateg
:certificate fauthority's certificateg

[:certificateChain fthe certificate chain of authorityg]
[:signature fsignature signed by the security agentg]
:ontology PKCertificate

Where the content of "certi�cateName" also identi�es the type of certi�cate which
should be the type intended by the applicant agent. The issued certi�cate is included
as the content of "content".

Upon receiving this performative, the agent which is applying for its certi�cate can ex-
tract the public key in "certi�cate" (authority's certi�cate) and check the authenticity
of the issued certi�cate by means of verifying the signature in the issued certi�cate.

3. renew-certi�cate

Each time when an agent is going to change its public key, or other pieces of infor-
mation in its certi�cate, it will send the following performative to the security agent
that issued the original certi�cate.

renew-certificate

:language fname of certificateg

10



:content fcontent of new certificateg

:certificate foriginal certificateg
:signature fsignature on content of new certificateg

:ontology PKCertificate

When receiving the performative, the security agent will extract the public key from
the original certi�cate and check the authenticity of the content of new certi�cate by
verifying the signature with the public key. If the authenticity has been veri�ed, the
security agent can sign the new certi�cate and issue it to the applicant by sending
back an issue-certi�cate performative.

4. update-certi�cate

If a security agent updates its public key, it should inform (1) the agents that applied
for a certi�cate from it, and (2) the agents whose certi�cates were issued by the
agents to whom the updated certi�cate has been sent. All these agents, upon receipt
of the update-certi�cate, will update their CDB and renew their certi�cates. To
inform others about the updated certi�cate, a security agent should use the following
performative:

update-certificate:

:language fname of certificateg
:content fupdated certificateg

:certificate foriginal certificateg
:signature fsignature on updated certificate with the

public key in the old certificateg
:ontology PKCertificate

Upon receiving the performative, the receiver will check the authenticity of the up-
dated certi�cate by verifying signature with the public key included in the original
certi�cate.

5. revoke-certi�cate

A certi�cate could be revoked for some reasons. If a security agent is going to revoke
its certi�cate, it will send the following performative to other agents associated with it,
especially the agents that hold the certi�cates issued by the agent whose certi�cate
is to be revoked. When an agent is informed of revoked certi�cate, it should also
forward the performative to the agents that hold the certi�cates issued by it.

revoke-certificate:

:language fname of certificate to be revokedg
:content fthe certificate to be revokedg

:signature fsignature on the certificate to be revokedg,
[:certificate fcertificateg]

[:certificateChain fcertificateChaing]
:ontology PKCertificate

11



where the signature is signed with the public key included in the certi�cate to be
revoked.

These are the performatives for the basic certi�cate management. If, in the future more so-
phisticated mcerti�cate management is needed, additional performatives can be developed.

4 Conclusion

In this paper, we discussed an agent-based implementation of PKI. Unlike the traditional
way of PKI implementation, we propose to implement the authorities of authentication
veri�cation service systems as personal autonomous software agents, called security agents,
instead of building a static monolithic hierarchy. Formats of certi�cates for various ap-
plications can be personalized by the users or speci�c applications. The authentication
relationship can be dynamically established even across multi-certi�cate hierarchies by use
of the security agents. Two aspects of the implementation, the functional structure and
communication language extension, were discussed. To summarize:

From the viewpoint of application of public key cryptosystem, our work:

1. Makes the construction of scalable authentication system much more feasible by employ-
ing the security agents in a bottom up fashion.

2. Makes interoperation of multi-certi�cate authentication system possible.

3. Can help customize certi�cate management while relieving the workload for certi�cate
users.

From the viewpoint of agent applications,

4. The implementation will lay a authentication foundation for agent security. This is
signi�cant for application of agent technology especially in electronic commerce.

Naturally, there remain some open problems and issues that we discuss in the next section.

5 Future Work

With the KQML-based PKI, the software agents, including security agents and applica-
tion will be able to e�ciently manage their certi�cates, prove/verify the authentication of
communications, and encrypt/decrypt messages. However, there are some remaining issues
that we are going to address in future work.

Which kind of security policy can be speci�ed so that security agents will automatically
perform transmission of credentials among di�erent authentication veri�cation service sys-

12



tems?

How to de�ne a suitable language for the users to describe their security policy and security
protocols so that the agent delegates of a user can safely transact electronic business on his
behalf?

Under what circumstances should a message, or part of the message, be encrypted, or
signed, or signed and encrypted?

Now that we allow the users to de�ne the formats of their certi�cates and management pro-
tocols, it is necessary for agents to be able to check the correctness and robustness against
attacks. This is another important future work. Interested readers may like to refer[15][16].

References

[1] W. Timothy Polk, Donna F. Dodson, etc, Public Key Infrastructure: From Theory to
Implementation, http://csrc.ncsl.nist.gov/pki/panel/overview.html, NIST

[2] Tim Finin, Yannis Labrou, and James May�eld, KQML as an agent communication
language, in Je� Bradshaw (Ed.), "Software Agents", MIT Press, Cambridge (1997).

[3] URL, Public-Key Infrastructure (X.509) (pkix),
http://www.ietf.org/html.charters/pkix-charter.html

[4] URL, RSA Laboratories, PKCS (Public Key Crypto System)
http://www.rsa.com/rsalabs/pubs/PKCS/

[5] Philip R. Zimmermann, The O�cial PGP User's Guide MIT Press 1995.

[6] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, Tatu
Ylonen, Simple Public Key Certi�cate, http://www.clark.net/pub/cme/spki.txt

[7] Ronald L. Rivest, Butler Lampson, SDSI - A Simple Distributed Security Infrastruc-
ture, http://theory.lcs.mit.edu/ cis/sdsi.html

[8] URL, International Telcommunication Union, X.509,
http://www.itu.int/itudoc/itu-t/rec/x/x500up/

[9] E. Gerck,Overview of Certi�cation Systems: X.509, CA, PGP and SKIP,
http://novaware.cps.softex.br/mcg/cert.html.

[10] Peter Gutmann, X.509 Style Guide,
http://www.cs.auckland.ac.nz/ pgut001/x509guide.txt

[11] Bruce Schneier,Applied Cryptography, Second Edition, John Wiley and Sons, Inc.,
1996.

13



[12] Matt Blaze, Joan Feigenbaum, Jack Lacy, Decentralized Trust Management, In Pro-
ceedings 1996 IEEE Symposium on Security and Privacy, May, 1996.

[13] Sycara, K., Decker, K, Pannu, A., Williamson, M and Zeng, D., Distributed Intelligent
Agents. IEEE Expert, pp.36-45, December 1996.

[14] Tim Finin, James May�eld, Chelliah Thirunavukkarasu, Secret Agents - A Security
Architecture for the KAML Agent Communication Language, CIKM'95 Intelligent
Information Agents Workshop, Baltimore, December 1995.

[15] Darrell Kindred, Jeannette M. Wing, Fast, Automatic Checking of Security Protocols,
Proc. of the USENIX 1996 Workshop on Electronic Commerce, November 1996.

[16] Nevin Heintze, Doug Tygar, Jeannette Wing, and Hao-Chi Wong, Model Checking
Electronic Commerce Protocols, Proc. of the USENIX 1996 Workshop on Electronic
Commerce, November 1996.

[17] Leonard N. Foner, A Security Architecture for Multi-Agent Matchmaking, Proceeding
of Second International Conference on Multi-Agent System, Mario Tokoro, 1996

14


